scholarly journals TBK1 regulates regeneration of pancreatic β-cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yun-Fang Jia ◽  
Subbiah Jeeva ◽  
Jin Xu ◽  
Carrie Jo Heppelmann ◽  
Jin Sung Jang ◽  
...  

Abstract Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate β-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in β-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat β-cells. Conversely, TBK1 overexpression decreased sensitivity of β-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of β-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of β-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived β-cells and human islets. TBK1 expression was increased in β-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and β-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional β-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a β-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional β-cells.

2015 ◽  
Vol 100 (10) ◽  
pp. 3651-3659 ◽  
Author(s):  
Cristina Aguayo-Mazzucato ◽  
Amanda DiIenno ◽  
Jennifer Hollister-Lock ◽  
Christopher Cahill ◽  
Arun Sharma ◽  
...  

Context: Human embryonic stem cells (hESCs) differentiated toward β-cells and fetal human pancreatic islet cells resemble each other transcriptionally and are characterized by immaturity with a lack of glucose responsiveness, low levels of insulin content, and impaired proinsulin-to-insulin processing. However, their response to stimuli that promote functionality have not been compared. Objective: The objective of the study was to evaluate the effects of our previous strategies for functional maturation developed in rodents in these two human models of β-cell immaturity and compare their responses. Design, Settings, Participants, and Interventions: In proof-of-principle experiments using either adenoviral-mediated overexpression of V-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) or the physiologically driven path via thyroid hormone (T3) and human fetal islet-like cluster (ICC) functional maturity was evaluated. Then the effects of T3 were evaluated upon the functional maturation of hESCs differentiated toward β-cells. Main Outcome Measures: Functional maturation was evaluated by the following parameters: glucose responsiveness, insulin content, expression of the mature β-cell transcription factor MAFA, and proinsulin-to-insulin processing. Results: ICCs responded positively to MAFA overexpression and T3 treatment as assessed by two different maturation parameters: increased insulin secretion at 16.8 mM glucose and increased proinsulin-to-insulin processing. In hESCs differentiated toward β-cells, T3 enhanced MAFA expression, increased insulin content (probably mediated by the increased MAFA), and increased insulin secretion at 16.8 mM glucose. Conclusion: T3 is a useful in vitro stimulus to promote human β-cell maturation as shown in both human fetal ICCs and differentiated hESCs. The degree of maturation induced varied in the two models, possibly due to the different developmental status at the beginning of the study.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2005 ◽  
Vol 21 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Sankaranand S. Vukkadapu ◽  
Jenine M. Belli ◽  
Koji Ishii ◽  
Anil G. Jegga ◽  
John J. Hutton ◽  
...  

In type 1 diabetes mellitus (T1DM), also known as autoimmune diabetes, the pathogenic destruction of the insulin-producing pancreatic β-cells is under the control of and influenced by distinct subsets of T lymphocytes. To identify the critical genes expressed by autoimmune T cells, antigen presenting cells, and pancreatic β-cells during the evolution of T1DM in the nonobese diabetic (NOD) mouse, and the genetically-altered NOD mouse (BDC/N), we used functional genomics. Microarray analysis revealed increased transcripts of genes encoding inflammatory cytokines, particularly interleukin (IL)-17, and islet cell regenerating genes, Reg3α, Reg3β, and Reg3γ. Our data indicate that progression to insulitis was connected to marked changes in islet antigen expression, β-cell differentiation, and T cell activation and signaling, all associated with tumor necrosis factor-α and IL-6 expression. Overt diabetes saw a clear shift in cytokine, chemokine, and T cell differentiation factor expression, consistent with a focused Th1 response, as well as a significant upregulation in genes associated with cellular adhesion, homing, and apoptosis. Importantly, the temporal pattern of expression of key verified genes suggested that T1DM develops in a relapsing/remitting as opposed to a continuous fashion, with insulitis linked to hypoxia-regulated gene control and diabetes with C/EBP and Nkx2 gene control.


Author(s):  
Bas Brouwers ◽  
Ilaria Coppola ◽  
Katlijn Vints ◽  
Bastian Dislich ◽  
Nathalie Jouvet ◽  
...  

AbstractFurin is a proprotein convertase (PC) responsible for proteolytic activation of a wide array of precursor proteins within the secretory pathway. It maps to the PRC1 locus, a type 2 diabetes susceptibility locus, yet its specific role in pancreatic β cells is largely unknown. The aim of this study was to determine the role of furin in glucose homeostasis. We show that furin is highly expressed in human islets, while PCs that potentially could provide redundancy are expressed at considerably lower levels. β cell-specific furin knockout (βfurKO) mice are glucose intolerant, due to smaller islets with lower insulin content and abnormal dense core secretory granule morphology. RNA expression analysis and differential proteomics on βfurKO islets revealed activation of Activating Transcription Factor 4 (ATF4), which was mediated by mammalian target of rapamycin C1 (mTORC1). βfurKO cells show impaired cleavage of the essential V-ATPase subunit Ac45, and by blocking this pump in β cells the mTORC1 pathway is activated. Furthermore, βfurKO cells show lack of insulin receptor cleavage and impaired response to insulin. Taken together, these results suggest a model of mTORC1-ATF4 hyperactivation in β cells lacking furin, which causes β cell dysfunction.


2020 ◽  
Vol 21 (21) ◽  
pp. 8016
Author(s):  
Tina Dahlby ◽  
Christian Simon ◽  
Marie Balslev Backe ◽  
Mattias Salling Dahllöf ◽  
Edward Holson ◽  
...  

Selective inhibition of histone deacetylase 3 (HDAC3) prevents glucolipotoxicity-induced β-cell dysfunction and apoptosis by alleviation of proapoptotic endoplasmic reticulum (ER) stress-signaling, but the precise molecular mechanisms of alleviation are unexplored. By unbiased microarray analysis of the β-cell gene expression profile of insulin-producing cells exposed to glucolipotoxicity in the presence or absence of a selective HDAC3 inhibitor, we identified Enhancer of zeste homolog 2 (EZH2) as the sole target candidate. β-Cells were protected against glucolipotoxicity-induced ER stress and apoptosis by EZH2 attenuation. Small molecule inhibitors of EZH2 histone methyltransferase activity rescued human islets from glucolipotoxicity-induced apoptosis. Moreover, EZH2 knockdown cells were protected against glucolipotoxicity-induced downregulation of the protective non-canonical Nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) pathway. We conclude that EZH2 deficiency protects from glucolipotoxicity-induced ER stress, apoptosis and downregulation of the non-canonical NFκB pathway, but not from insulin secretory dysfunction. The mechanism likely involves transcriptional regulation via EZH2 functioning as a methyltransferase and/or as a methylation-dependent transcription factor.


2018 ◽  
Vol 314 (5) ◽  
pp. E512-E521 ◽  
Author(s):  
Michael G. Spelios ◽  
Lauren A. Afinowicz ◽  
Regine C. Tipon ◽  
Eitan M. Akirav

Three-dimensional (3D) pseudoislets (PIs) can be used for the study of insulin-producing β-cells in free-floating islet-like structures similar to that of primary islets. Previously, we demonstrated the ability of islet-derived endothelial cells (iECs) to induce PIs using murine insulinomas, where PI formation enhanced insulin production and glucose responsiveness. In this report, we examined the ability of iECs to spontaneously induce the formation of free-floating 3D PIs using the EndoC-βH1 human β-cell line murine MS1 iEC. Within 14 days, the coculturing of both cell types produced fully humanized EndoC-βH1 PIs with little to no contaminating murine iECs. The size and shape of these PIs were similar to primary human islets. iEC-induced PIs demonstrated reduced dysregulated insulin release under low glucose levels and higher insulin secretion in response to high glucose and exendin-4 [a glucagon-like peptide-1 (GLP-1) analog] compared with monolayer cells cultured alone. Interestingly, iEC-PIs were also better at glucose sensing in the presence of extendin-4 compared with PIs generated on a low-adhesion surface plate in the absence of iECs and showed an overall improvement in cell viability. iEC-induced PIs exhibited increased expression of key genes involved in glucose transport, glucose sensing, β-cell differentiation, and insulin processing, with a concomitant decrease in glucagon mRNA expression. The enhanced responsiveness to exendin-4 was associated with increased protein expression of GLP-1 receptor and phosphokinase A. This rapid coculture system provides an unlimited number of human PIs with improved insulin secretion and GLP-1 responsiveness for the study of β-cell biology.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Francesco Volta ◽  
M. Julia Scerbo ◽  
Anett Seelig ◽  
Robert Wagner ◽  
Nils O’Brien ◽  
...  

Abstract Diabetes mellitus affects one in eleven adults worldwide. Most suffer from Type 2 Diabetes which features elevated blood glucose levels and an inability to adequately secrete or respond to insulin. Insulin producing β-cells have primary cilia which are implicated in the regulation of glucose metabolism, insulin signaling and secretion. To better understand how β-cell cilia affect glucose handling, we ablate cilia from mature β-cells by deleting key cilia component Ift88. Here we report that glucose homeostasis and insulin secretion deteriorate over 12 weeks post-induction. Cilia/basal body components are required to suppress spontaneous auto-activation of EphA3 and hyper-phosphorylation of EphA receptors inhibits insulin secretion. In β-cells, loss of cilia/basal body function leads to polarity defects and epithelial-to-mesenchymal transition. Defective insulin secretion from IFT88-depleted human islets and elevated pEPHA3 in islets from diabetic donors both point to a role for cilia/basal body proteins in human glucose homeostasis.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 570-579 ◽  
Author(s):  
Wei Chen ◽  
Salma Begum ◽  
Lynn Opare-Addo ◽  
Justin Garyu ◽  
Thomas F. Gibson ◽  
...  

It is thought that differentiation of β-cell precursors into mature cells is largely autonomous, but under certain conditions differentiation can be modified by external factors. The factors that modify β-cell differentiation have not been identified. In this study, we tested whether adult islet cells can affect the differentiation process in mouse and human pancreatic anlage cells. We assessed β-cell proliferation and differentiation in mouse and human pancreatic anlage cells cocultured with adult islet cells or βTC3 cells using cellular, molecular, and immunohistochemical methods. Differentiation of murine anlage cells into β-cells was induced by mature islet cells. It was specific for β-cells and not a general feature of endodermal derived cells. β-Cell differentiation required cell-cell contact. The induced cells acquired features of mature β-cells including increased expression of β-cell transcription factors and surface expression of receptor for stromal cell-derived factor 1 and glucose transporter-2 (GLUT-2). They secreted insulin in response to glucose and could correct hyperglycemia in vivo when cotransplanted with vascular cells. Human pancreatic anlage cells responded in a similar manner and showed increased expression of pancreatic duodenal homeobox 1 and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and increased production of proinsulin when cocultured with adult islets. We conclude that mature β-cells can modify the differentiation of precursor cells and suggest a mechanism whereby changes in differentiation of β-cells can be affected by other β-cells. Mature β cells affect differentiation of pancreatic anlage cells into functional β cells. The differentiated cells respond to glucose and ameliorate diabetes.


2016 ◽  
Vol 113 (3) ◽  
pp. 650-655 ◽  
Author(s):  
Mingfeng Zhang ◽  
Qing Lin ◽  
Tong Qi ◽  
Tiankun Wang ◽  
Ching-Cheng Chen ◽  
...  

We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9+ (Sox9+) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9+ ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9+ ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300–450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9+ ductal cell differentiation into β cells in adult mice.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 175-185 ◽  
Author(s):  
Takeru Matsuda ◽  
Kevin Ferreri ◽  
Ivan Todorov ◽  
Yoshikazu Kuroda ◽  
Craig V. Smith ◽  
...  

Silymarin is a polyphenolic flavonoid that has a strong antioxidant activity and exhibits anticarcinogenic, antiinflammatory, and cytoprotective effects. Although its hepatoprotective effect has been well documented, the effect of silymarin on pancreatic β-cells is largely unknown. In this study, the effect of silymarin on IL-1β and/or interferon (IFN)-γ-induced β-cell damage was investigated using RINm5F cells and human islets. IL-1β and/or IFN-γ induced cell death in a time-dependent manner in RINm5F cells. The time-dependent increase in cytokine-induced cell death appeared to correlate with the time-dependent nitric oxide (NO) production. Silymarin dose-dependently inhibited both cytokine-induced NO production and cell death in RINm5F cells. Treatment of human islets with a combination of IL-1β and IFN-γ (IL-1β+IFN-γ), for 48 h and 5 d, resulted in an increase of NO production and the impairment of glucose-stimulated insulin secretion, respectively. Silymarin prevented IL-1β+IFN-γ-induced NO production and β-cell dysfunction in human islets. These cytoprotective effects of silymarin appeared to be mediated through the suppression of c-Jun NH2-terminal kinase and Janus kinase/signal transducer and activator of transcription pathways. Our data show a direct cytoprotective effect of silymarin in pancreatic β-cells and suggest that silymarin may be therapeutically beneficial for type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document