scholarly journals Sex-dependent differences in single-leg squat kinematics and their relationship to squat depth in physically active individuals

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Magdalena Zawadka ◽  
Jakub Smolka ◽  
Maria Skublewska-Paszkowska ◽  
Edyta Lukasik ◽  
Aleksandra Bys ◽  
...  

Abstract The purpose of this study is to compare recreationally physically active females and males with regard to spine, pelvis and lower limb joints peak angles in each plane of motion during a single leg squat (SLS). The second aim is to investigate the relationship between kinematics and SLS depth in females and males. Fifty-eight healthy, young adults performed 5 repetitions of a single right leg squat to maximal depth while keeping their balance. Kinematic data were obtained using an optical motion capture system. At the hip, greater adduction and greater internal rotation were observed in females than in males. Females had more extended spines and less outward bended knees throughout the SLS than did men. In males, squat depth was significantly, positively correlated with the maximal angle of the ankle (r = 0.60, p < 0.001), the knee (r = 0.87, p < 0.001), the hip (r = 0.73, p < 0.001) and the pelvis (r = 0.40, p = 0.02) in the sagittal plane. A positive significant correlation was found between SLS depth and maximal angle of the knee (r = 0.88, p < 0.001) and the ankle (r = 0.53, p = 0.01) in the sagittal plane in females. Males and females used different motor strategies at all levels of the kinematic chain during SLS.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4539
Author(s):  
Igor Tak ◽  
Willem-Paul Wiertz ◽  
Maarten Barendrecht ◽  
Rob Langhout

Aim: Study concurrent validity of a new sensor-based 3D motion capture (MoCap) tool to register knee, hip and spine joint angles during the single leg squat. Design: Cross-sectional. Setting: University laboratory. Participants: Forty-four physically active (Tegner ≥ 5) subjects (age 22.8 (±3.3)) Main outcome measures: Sagittal and frontal plane trunk, hip and knee angles at peak knee flexion. The sensor-based system consisted of 4 active (triaxial accelerometric, gyroscopic and geomagnetic) sensors wirelessly connected with an iPad. A conventional passive tracking 3D MoCap (OptiTrack) system served as gold standard. Results: All sagittal plane measurement correlations observed were very strong for the knee and hip (r = 0.929–0.988, p < 0.001). For sagittal plane spine assessment, the correlations were moderate (r = 0.708–0.728, p < 0.001). Frontal plane measurement correlations were moderate in size for the hip (ρ = 0.646–0.818, p < 0.001) and spine (ρ = 0.613–0.827, p < 0.001). Conclusions: The 3-D MoCap tool has good to excellent criterion validity for sagittal and frontal plane angles occurring in the knee, hip and spine during the single leg squat. This allows bringing this type of easily accessible MoCap technology outside laboratory settings.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 301
Author(s):  
Cajsa Ericson ◽  
Pernilla Stenfeldt ◽  
Aagje Hardeman ◽  
Inger Jacobson

Kinesiotape theoretically stimulates mechanoreceptive and proprioceptive sensory pathways that in turn may modulate the neuromuscular activity and locomotor function, so alteration of activation, locomotion and/or range of motion (ROM) can be achieved. The aim of this study was to determine whether kinesiotape applied to the abdominal muscles would affect the ROM in flexion-extension (sagittal plane) in the thoracolumbar back of horses at trot. The study design was a paired experimental study, with convenient sample. Each horse was randomly placed in the control or the intervention group and then the order reversed. Eight horses trotted at their own preferred speed in hand on a straight line, 2 × 30 m. Optical motion capture was used to collect kinematic data. Paired t-tests, normality tests and 1-Sample Wilcoxon test were used to assess the effects of the kinesiotape. No statistical significance (p < 0.05) for changes in flexion-extension of the thoracolumbar back in trot was shown in this group of horses. Some changes were shown indicating individual movement strategies in response to stimuli from the kinesiotape. More research in this popular and clinically used method is needed to fully understand the reacting mechanisms in horses.


2016 ◽  
Vol 29 (06) ◽  
pp. 475-483 ◽  
Author(s):  
Alexandra Pauls ◽  
Chris Kawcak ◽  
Kevin Haussler ◽  
Gina Bertocci ◽  
Valerie Moorman ◽  
...  

Summary Objective: To evaluate the use of inertial measurement units (IMU) for quantification of canine limb kinematics. Methods: Sixteen clinically healthy, medium-sized dogs were enrolled. Baseline kinematic data were acquired using an optical motion capture system. Following this baseline data acquisition, a harness system was used for attachment of IMU to the animals. Optical kinematic data of dogs with and without the harness were compared to evaluate the influence of the harness on gait parameters. Sagittal plane joint kinematics acquired simultaneously with IMU and the optical system were compared for the carpal, tarsal, stifle and hip joints. Comparisons of data were made using the concordance correlation coefficient (CCC) test and evaluation of root mean squared errors (RMSE). Results: No significant differences were demonstrated in stance duration, swing duration or stride length between dogs instrumented with or without the harness, however, mean RMSE values ranged from 4.90° to 14.10° across the various joints. When comparing simultaneously acquired optical and IMU kinematic data, strong correlations were found for all four joints evaluated (CCC: carpus = 0.98, hock = 0.95, stifle = 0.98, hip = 0.96) and median RMSE values were similar across the joints ranging from 2.51° to 3.52°. Conclusions and Clinical relevance: Canine sagittal plane motion data acquisition with IMU is feasible, and optically acquired and IMU acquired sagittal plane kinematics had good correlation. This technology allows data acquisition outside the gait laboratory and may provide an alternative to optical kinematic gait analysis for the carpal, tarsal, stifle, and hip joints in the dog. Further investigation into this technology is indicated.


Author(s):  
Wei Wang ◽  
Dongmei Wang ◽  
Mariska Wesseling ◽  
Bin Xue ◽  
Feiyue Li

This study aimed to find an optimal measurement protocol of elbow and forearm kinematics using different modelling and tracking methods. Kinematic data of elbow flexion/extension and forearm pronation/supination was acquired using optical motion capture from 12 healthy male volunteers. Segment coordinate systems for humerus, forearm, radius, ulna, and hand were defined. Different tracking methods, using anatomical markers or rigid or point maker clusters, were used to compute the three-dimensional rotations. Marker placement errors were assessed to evaluate the rigid body assumption. Multiple comparisons demonstrated statistical differences between tracking methods: compared to using only anatomical markers, tracking using clusters reduced the estimated range of pronation/supination by 14.9%–43.2%, while it estimated increased flexion/extension by 5.3%–9.1%. The study suggests using only anatomical markers exerts the optimal estimation of elbow and forearm kinematics. Modelling using the coordinate systems of the humerus and forearm and of the humerus and ulna, respectively, demonstrated good consistency with literature and are correspondingly regarded as the most appropriate approach for measuring pronation/supination and flexion/extension. The results are valuable in establishing a measurement protocol for analysing elbow and forearm kinematics, avoiding confusions and misinterpretations in communicating results from different methodologies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Quanyi Lu ◽  
Runtao Zhou ◽  
Shichang Gao ◽  
Anlin Liang ◽  
Mingming Yang ◽  
...  

Abstract Background The infra-acetabular corridor is quite narrow, which makes a challenge for the orthopedists to insert the screw. This study aimed to explore the relationship between the infra-acetabular corridor diameter (IACD) and the minimum thickness of medial acetabular wall (MTMAW), and to clarify the way of screw placement. Methods The Computed tomography (CT) data of 100 normal adult pelvises (50 males and 50 females respectively) were collected and pelvis three-dimensional (3D) reconstruction was performed by using Mimics software and the 3D model was imported into Geomagic Studio software. The perspective of acetabulum was carried out orienting from iliopubic eminence to ischial tuberosity and the IACD was measured by placing virtual screws which was vertical to the corridor transverse section of “teardrop”. The relationship between IACD and MTMAW was analyzed. When IACD was ≥5 mm, 3.5 mm all-in screws were placed. When IACD was < 5 mm, 3.5 mm in-out-in screws were placed. Results The IACD of males and females were (6.15 ± 1.24) mm and (5.42 ± 1.01) mm and the MTMAW in males and females were (4.40 ± 1.23) mm and (3.60 ± 0.81) mm respectively. The IACD and MTMAW in males were significantly wider than those of females (P < 0.05), and IACD was positively correlated with MTMAW (r = 0.859), the regression equation was IACD = 2.111 + 0.917 MTMAW. In the all-in screw group, 38 cases (76%) were males and 33 cases (66%) were females respectively. The entry point was located at posteromedial of the apex of iliopubic eminence, and the posterior distance and medial distance were (8.03 ± 2.01) mm and (8.49 ± 2.68) mm respectively in males. As for females, those were (8.68 ± 2.35) mm and (8.87 ± 2.79) mm respectively. In the in-out-in screw group, 12 cases (24%) were males and 17 cases (34%) were females, respectively. The posterior distance and medial distance between the entry point and the apex of iliopubic eminence were (10.49 ± 2.58) mm and (6.17 ± 1.84) mm respectively in males. As for females, those were (10.10 ± 2.63) mm and (6.63 ± 1.49) mm respectively. The angle between the infra-acetabular screw and the sagittal plane was medial inclination (0.42 ± 6.49) °in males, lateral inclination (8.09 ± 6.33) °in females, and the angle between the infra-acetabular screw and the coronal plane was posterior inclination (54.06 ± 7.37) °. Conclusions The placement mode of the infra-acetabular screw (IAS) can be determined preoperatively by measuring the MTMAW in the CT axial layers. Compared with all-in screw, the in-out-in screw entry point was around 2 mm outwards and backwards, and closer to true pelvic rim.


2015 ◽  
Vol 1 (1) ◽  
pp. 446-469 ◽  
Author(s):  
Thomas Seel ◽  
David Graurock ◽  
Thomas Schauer

AbstractFoot orientation can be assessed in realtime by means of a foot-mounted inertial sensor. We consider a method that uses only accelerometer and gyroscope readings to calculate the foot pitch and roll angle, i.e. the foot orientation angle in the sagittal and frontal plane, respectively. Since magnetometers are avoided completely, the method can be used indoors as well as in the proximity of ferromagnetic material and magnetic disturbances. Furthermore, we allow for almost arbitrary mounting orientation in the sense that we only assume one of the local IMU coordinate axes to lie in the sagittal plane of the foot. The method is validated with respect to a conventional optical motion capture system in trials with transfemoral amputees walking with shoes and healthy subjects walking barefoot, both at different velocities. Root mean square deviations of less than 4° are found in all scenarios, while values near 2° are found in slow shoe walking. This demonstrates that the proposed method is suitable for realtime application such as the control of FES-based gait neuroprostheses and active orthoses.


2021 ◽  
Author(s):  
Quanyi Lu ◽  
Runtao Zhou ◽  
Shichang Gao ◽  
Anlin Liang ◽  
Mingming Yang ◽  
...  

Abstract Background: The infra-acetabular corridor is quite narrow, which makes a challenge for the orthopedists to insert the screw. This study aimed to explore the relationship between the infra-acetabular corridor diameter (IACD) and the minimum thickness of medial acetabular wall(MTMAW), and to clarify the way of screw placement. Methods: The Computed tomography (CT) data of 100 normal adult pelvises (50 males and 50 females respectively) were collected and pelvis three-dimensional(3D) reconstruction was performed by using Mimics software and the 3D model was imported into Geomagic Studio software. The perspective of acetabulum was carried out orienting from iliopubic eminence to ischial tuberosity and the IACD was measured by placing virtual screws which was vertical to the corridor transverse section of "teardrop". The relationship between IACD and MTMAW was analyzed. When IACD was ≥ 5 mm, 3.5mm all-in screws were placed. When IACD was < 5 mm, 3.5mm in-out-in screws were placed. Results: The IACD of males and females were (6.15 ± 1.24) mm and (5.42 ± 1.01) mm and the MTMAW in males and females were (4.40 ± 1.23) mm and (3.60 ± 0.81)mm respectively. The IACD and MTMAW in males were significantly wider than those of females (P < 0.05), and IACD was positively correlated with MTMAW (r = 0.859), the regression equation was IACD = 2.111 + 0.917 MTMAW. In the all-in screw group, 38 cases (76%) were males and 33 cases (66%) were females respectively. The entry point was located at posteromedial of the apex of iliopubic eminence, and the posterior distance and medial distance were (8.03±2.01)mm and (8.49±2.68)mm respectively in males. As for females, those were (8.68±2.35)mm and (8.87±2.79)mm respectively. In the in-out-in screw group, 12 cases (24%) were males and 17 cases (34%) were females, respectively. The posterior distance and medial distance between the entry point and the apex of iliopubic eminence were (10.49±2.58)mm and (6.17±1.84)mm respectively in males. As for females, those were (10.10±2.63)mm and (6.63±1.49)mm respectively. The angle between the infra-acetabular screw and the sagittal plane was medial inclination (0.42 ± 6.49) °in males, lateral inclination (8.09 ± 6.33) °in females, and the angle between the infra-acetabular screw and the coronal plane was posterior inclination (54.06 ± 7.37) °. Conclusions: The placement mode of the infra-acetabular screw(IAS) can be determined preoperatively by measuring the MTMAW in the CT axial layers. Compared with all-in screw, the in-out-in screw entry point was around 2mm outwards and backwards, and closer to true pelvic rim.


2020 ◽  
Author(s):  
Robert Kanko ◽  
Elise Laende ◽  
Elysia Davis ◽  
W. Scott Selbie ◽  
Kevin J. Deluzio

AbstractKinematic analysis is a useful and widespread tool used in research and clinical biomechanics for the estimation of human pose and the quantification of human movement. Common marker-based optical motion capture systems are expensive, time intensive, and require highly trained operators to obtain kinematic data. Markerless motion capture systems offer an alternative method for the measurement of kinematic data with several practical benefits. This work compared the kinematics of human gait measured using a deep learning algorithm-based markerless motion capture system to those of a common marker-based motion capture system. Thirty healthy adult participants walked on a treadmill while data were simultaneously recorded using eight video cameras (markerless) and seven infrared optical motion capture cameras (marker-based). Video data were processed using markerless motion capture software, marker-based data were processed using marker-based capture software, and both sets of data were compared. The average root mean square distance (RMSD) between corresponding joints was less than 3 cm for all joints except the hip, which was 4.1 cm. Lower limb segment angles indicated pose estimates from both systems were very similar, with RMSD of less than 6° for all segment angles except those that represent rotations about the long axis of the segment. Lower limb joint angles captured similar patterns for flexion/extension at all joints, ab/adduction at the knee and hip, and toe-in/toe-out at the ankle. These findings demonstrate markerless motion capture can measure similar 3D kinematics to those from marker-based systems.


2020 ◽  
Vol 10 (23) ◽  
pp. 8703
Author(s):  
Yanyan Du ◽  
Yubo Fan

Fatigue is a major injury risk factor. The aim of this study was to investigate the effects of fatigue on lunging during the fatiguing process. The lower extremity joint kinematics and kinetics of fifteen male collegiate badminton players were simultaneously recorded by optical motion-capture and force plate systems during lunging. In addition to statistical analyses of discrete variables, one-dimensional statistical parametric mapping (SPM (1D)) was used to analyze the waveform data. The hypotheses were that the biomechanics of lunging maneuvers would change during the fatiguing process, and the fatigue effects would differ in different periods (I–V) of the stance phase and in different joints. Results showed that the initial contact angles, peak angles, moments, power, and time needed to reach the peak angles at the hip, knee, and ankle in the sagittal plane all decreased post-fatigue. A continuous decreasing tendency was reflected in the moments and power of hip and, in particular, knee joints (mostly p < 0.001). Period IV showed a significant fatigue response. In conclusion, both discrete and waveform data illustrated the effects of fatigue, however, the results of SPM (1D) analysis showed both the key period and body segments affected by the fatigue response.


Author(s):  
Monika Błaszczyszyn ◽  
Agnieszka Szczęsna ◽  
Magdalena Pawlyta ◽  
Maciej Marszałek ◽  
Dariusz Karczmit

Background: Each of the techniques used in sport is a complex technique requiring a combination of neuromuscular conduction, motor anticipation, and extremely developed proprioception. This is especially the case in martial arts when we deal with a kick or a blow to a specific target. Methods: The main purpose of this study was to determine the kinematic differences in the tested movement pattern among athletes with different levels of advancement in the conditions of kicking: in the air, at a target (a shield), and in direct contact with a competitor. Comparative analysis was performed among 26 players: 13 advanced (group G1) and 13 beginners (group G2). Kinematic data was recorded using an optical motion capture system. The examination consisted of performing three tests of mae-geri kick in sequences of three kicks in three different conditions (without a target, with a static target, and with an opponent). The examination was performed with the back leg and only the moment of kick was analyzed. Results: The most significant differences were observed in the movement of head, torso, hip, knee, and ankle segments, especially during a kick at a shield. Based on the conducted analysis, we can assume that karate training changes the strategy of neuromuscular control, promoting improvement of mobility pattern efficiency. Conclusion: Acquiring this type of knowledge can lead to better results, elimination of errors in training, especially in the initial period of training, and the prevention of possible injuries that occur during exercise or competition.


Sign in / Sign up

Export Citation Format

Share Document