scholarly journals Effects of topographical guidance cues on osteoblast cell migration

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
F. M. Refaaq ◽  
X. Chen ◽  
S. W. Pang

AbstractCell migration is a fundamental process that is crucial for many biological functions in the body such as immune responses and tissue regeneration. Dysregulation of this process is associated with cancer metastasis. In this study, polydimethylsiloxane platforms with various topographical features were engineered to explore the influence of guiding patterns on MC3T3-E1 osteoblast cell migration. Focusing on the guiding effects of grating patterns, variations such as etch depth, pattern discontinuity, and bending angles were investigated. In all experiments, MC3T3-E1 cells on patterned surfaces demonstrated a higher migration speed and alignment when compared to flat surfaces. The study revealed that an increase in etch depth from 150 nm to 4.5 μm enhanced cell alignment and elongation along the grating patterns. In the presence of discontinuous elements, cell migration speed was accelerated when compared to gratings of the same etch depth. These results indicated that cell directionality preference was influenced by a high level of pattern discontinuity. On patterns with bends, cells were more inclined to reverse on 45° bends, with 69% of cells reversing at least once, compared to 54% on 135° bends. These results are attributed to cell morphology and motility mechanisms that are associated with surface topography, where actin filament structures such as filopodia and lamellipodia are essential in sensing the surrounding environment and controlling cell displacement. Knowledge of geometric guidance cues could provide a better understanding on how cell migration is influenced by extracellular matrix topography in vivo.

Author(s):  
Brendon M. Baker ◽  
Colin K. Choi ◽  
Britta Trappmann ◽  
Christopher S. Chen

The biology of cell adhesion and migration has traditionally been studied on 2D glass or plastic surfaces. While such studies have shed light on the molecular mechanisms governing these processes [1], current knowledge is limited by the dissimilarity between the flat surfaces conventionally employed and the topographically complex extracellular matrix (ECM) cells routinely navigate within the body. On ECM-coated flat surfaces, cells are presented with an unlimited expanse of adhesive ligand and can spread and migrate freely. Conversely, the availability of ligand in vivo is generally restricted to ECM structures, forcing cells to form adhesions in prescribed locations distributed through 3D space depending on the geometry and organization of the surrounding matrix [2]. These physical constraints on cell adhesion likely have profound consequences on intracellular signaling and resulting migration, and calls into question whether the mechanisms and modes of cell motility observed on flat substrates are truly reflective of the in vivo scenario [3]. The topographies of ECMs found in vivo are varied but largely fibrillar, ranging from the tightly crosslinked fibers that form the sheet-like basement membrane, to the structure of fibrin-rich clots and collagenous connective tissues. Collagen comprises approximately 25% of the human body by mass, and as such, purified collagen has served as a popular setting for the study of cell migration within a fibrillar context for many decades [4]. However, a major limitation to the use of these gels is the inability to orthogonally dictate key structural features that impact cell behavior. For example, in contrast to the large range of fiber diameters found in vivo within connective tissue resulting from hierarchical collagen assembly and multiple types of collagens [3], collagen gels are limited to fibril diameters of ∼500nm. Furthermore, recreating the structural anisotropy common to connective tissues in collagen gels is technically challenging [5]. Thus, there remains a significant need for engineered fibrillar materials that afford precise and independent control of architectural and mechanical features for application in cell biology. In this work, we develop two approaches to fabricating fibrillar ECMs in order to study cell adhesion and migration in vitro.


2012 ◽  
Vol 2 (3) ◽  
pp. 337-355 ◽  
Author(s):  
Jindan Wu ◽  
Zhengwei Mao ◽  
Huaping Tan ◽  
Lulu Han ◽  
Tanchen Ren ◽  
...  

Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected.


Author(s):  
Shuichi Takayama ◽  
Dongeun Huh ◽  
Jonathan Song ◽  
Wansik Cha ◽  
Yunseok Heo

Many biological studies, drug screening methods, and cellular therapies require culture and manipulation of living cells outside of their natural environment in the body. The gap between the cellular microenvironment in vivo and in vitro, however, poses challenges for obtaining physiologically relevant responses from cells used in basic biological studies or drug screens and for drawing out the maximum functional potential from cells used therapeutically. One of the reasons for this gap is because the fluidic environment of mammalian cells in vivo is microscale and dynamic whereas typical in vitro cultures are macroscopic and static. This presentation will give an overview of efforts in our laboratory to develop microfluidic systems that enable spatio-temporal control of both the chemical and fluid mechanical environment of cells. The technologies and methods close the physiology gap to provide biological information otherwise unobtainable and to enhance cellular performance in therapeutic applications. Specific biomedical topics that will be discussed include, in vitro fertilization on a chip, microfluidic tissue engineering of small airway injuries, breast cancer metastasis on a chip, electrochemical biosensors, and development of tuneable nanofluidic systems towards applications in single molecule DNA analysis.


2021 ◽  
Author(s):  
Sue-Hwa Lin ◽  
Yu-Chen Lee ◽  
Song-Chang Lin ◽  
Guoyu Yu ◽  
Ming Zhu ◽  
...  

Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted BMP4. Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (iTRAQ) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced osteoblasts was confirmed by immunohistochemistry of MDA-PCa118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5β1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.


2019 ◽  
Author(s):  
T. Yaginuma ◽  
K. Kushiro ◽  
M. Takai

AbstractIn recent years, many types of micro-engineered platform have been fabricated to investigate the influences of surrounding microenvironments on cell migration. Previous researches demonstrate that microgroove-based topographies can influence cell motilities of normal and cancerous cells differently. In this paper, the microgroove wall angle is altered from obtuse to acute angles and the resulting differences in the responses of normal and cancer cells are investigated to explore the geometrical characteristics that can efficiently distinguish normal and cancer cells. Interestingly, trends in cell motilities of normal and cancer cells as the wall angles are varied between 60-120° were different, and in particular, invasive cancer cells exhibit a unique, oscillatory migratory behavior. Results from the immunostaining of cell mechanotransduction components suggest that this difference stems from directional extension and adhesion behaviors of each cell type. In addition, the specific behaviors of invasive cancer cells are found to be dependent on the myosin II activity, and modulating the activity can revert cancerous behaviors to normal ones. These novel findings on the interactions of acute angle walls and cancer cell migration provide a new perspective on cancer metastasis and additional strategies via microstructure geometries for the manipulations of cell behaviors in microscale biodevices.Statement of SignificanceCancer metastasis is the leading cause of cancer patient deaths, and yet how the microstructures within the body affect this cell migration phenomenon is not well understood. In this paper, microdevices containing microgroove structures of varying geometries, in particular obtuse and acute angles, were utilized to monitor cell motilities of various cancer cells to understand the influences of the geometrical features of microstructures on cancer metastasis. Surprisingly, it was found that the acute angle geometries lowered the persistence of migration for cancer cells, which was a totally different response from non-cancerous cells. These new findings would enable the next-generation biodevices to analyze, separate and capture cancer cells, as well as shed light onto the underlying mechanisms of cancer metastasis.


2017 ◽  
Vol 28 (19) ◽  
pp. 2579-2588 ◽  
Author(s):  
Puja Sharma ◽  
Colin Ng ◽  
Aniket Jana ◽  
Abinash Padhi ◽  
Paige Szymanski ◽  
...  

Cell emergence onto damaged or organized fibrous extracellular matrix (ECM) is a crucial precursor to collective cell migration in wound closure and cancer metastasis, respectively. However, there is a fundamental gap in our quantitative understanding of the role of local ECM size and arrangement in cell emergence–based migration and local gap closure. Here, using ECM-mimicking nanofibers bridging cell monolayers, we describe a method to recapitulate and quantitatively describe these in vivo behaviors over multispatial (single cell to cell sheets) and temporal (minutes to weeks) scales. On fiber arrays with large interfiber spacing, cells emerge (invade) either singularly by breaking cell–cell junctions analogous to release of a stretched rubber band (recoil), or in groups of few cells (chains), whereas on closely spaced fibers, multiple chains emerge collectively. Advancing cells on fibers form cell streams, which support suspended cell sheets (SCS) of various sizes and curvatures. SCS converge to form local gaps that close based on both the gap size and shape. We document that cell stream spacing of 375 µm and larger hinders SCS advancement, thus providing abilities to engineer closing and nonclosing gaps. Altogether we highlight the importance of studying cell-fiber interactions and matrix structural remodeling in fundamental and translational cell biology.


2004 ◽  
Vol 845 ◽  
Author(s):  
Iain R. Gibson ◽  
Colin D. McCaig

ABSTRACTWhen bovine ligament fibroblast cells were cultured on parallel micro-grooved surfaces, they aligned their long axes parallel to the groove direction. This alignment was dependent on the groove depth, with increasing groove depth increasing guided cell alignment. When cells were cultured in a physiological dc electric field (EF) on non-grooved, flat surfaces, the cells aligned in response to the EF, with their long axes perpendicular to the EF vector. This response was EF strength dependent, increasing EF strength (from 20 to 200mV/mm) increased cell alignment, perpendicular to the EF vector. These two guidance cues were applied simultaneously, so that the EF vector was parallel to the groove direction. At high but still physiological EF strengths (200mV/mm) cells ignored the topography and were guided by the EF alone, aligning perpendicular to the EF vector, as on non-grooved surfaces. At low field strengths (20mV/mm) cells responded only to the topographic guidance cue, with cells aligning parallel to the grooves and therefore also to the EF vector. Intermediate field strengths (50 to 100mV/mm) produced a mixed response, with cells responding to both guidance cues. The effect of removing serum from the culture medium on the EF and topographical guidance of fibroblast cells was studied and the results were compared to cells on non-grooved surfaces. Removal of serum produced a small but significant decrease in the angle of cell alignment for cells on non-grooved surfaces, from 78 to 63 degrees, relative to the EF vector, but did not completely suppress the EF guidance cue. In contrast, the EF guidance of cells on grooved substrates was suppressed almost completely by the absence of serum, with cells responding only to the grooved topography, aligning their long axis parallel to the grooves and the EF vector. These results imply that alignment of fibroblasts by topography is serum-independent, but alignment by EFs is serum-dependent. In addition they demonstrate that the alignment of fibroblast cells can be tailored by the dual guidance cues of topography and electric fields.


2020 ◽  
Vol 477 (6) ◽  
pp. 1159-1178
Author(s):  
Min Du ◽  
Guozheng Wang ◽  
Igor L. Barsukov ◽  
Stephane R. Gross ◽  
Richard Smith ◽  
...  

Overexpression of S100P promotes breast cancer metastasis in animals and elevated levels in primary breast cancers are associated with poor patient outcomes. S100P can differentially interact with nonmuscle myosin (NM) isoforms (IIA > IIC > IIB) leading to the redistribution of actomyosin filaments to enhance cell migration. Using COS-7 cells which do not naturally express NMIIA, S100P is now shown to interact directly with α,β-tubulin in vitro and in vivo with an equilibrium Kd of 2–3 × 10−7 M. The overexpressed S100P is located mainly in nuclei and microtubule organising centres (MTOC) and it significantly reduces their number, slows down tubulin polymerisation and enhances cell migration in S100P-induced COS-7 or HeLa cells. It fails, however, to significantly reduce cell adhesion, in contrast with NMIIA-containing S100P-inducible HeLa cells. When taxol is used to stabilise MTs or colchicine to dissociate MTs, S100P's stimulation of migration is abolished. Affinity-chromatography of tryptic digests of α and β-tubulin on S100P-bound beads identifies multiple S100P-binding sites consistent with S100P binding to all four half molecules in gel-overlay assays. When screened by NMR and ITC for interacting with S100P, four chemically synthesised peptides show interactions with low micromolar dissociation constants. The two highest affinity peptides significantly inhibit binding of S100P to α,β-tubulin and, when tagged for cellular entry, also inhibit S100P-induced reduction in tubulin polymerisation and S100P-enhancement of COS-7 or HeLa cell migration. A third peptide incapable of interacting with S100P also fails in this respect. Thus S100P can interact directly with two different cytoskeletal filaments to independently enhance cell migration, the most important step in the metastatic cascade.


2021 ◽  
Author(s):  
Cristian L Marchant ◽  
Abdul N Malmi-Kakkada ◽  
Jaime A Espina ◽  
Elias H Barriga

Embryogenesis, tissue repair and cancer metastasis rely on collective cell migration (CCM). In vitro studies propose that migrating cells are stiffer when exposed to stiff substrates, known to allow CCM, but softer when plated in compliant non-permissive surfaces. Here, by combining in vivo atomic force microscopy (iAFM) and modelling we reveal that to collectively migrate in vivo, cells require to dynamically decrease their stiffness in response to the temporal stiffening of their native substrate. Moreover, molecular and mechanical perturbations of embryonic tissues uncover that this unexpected cell mechanical response is achieved by a new mechanosensitive pathway involving Piezo1-mediated microtubule deacetylation. Finally, lowering microtubule acetylation and consequently cell stiffness was sufficient to allow CCM in soft non-permissive substrates, suggesting that a fixed value of substrate stiffness is not as essential for CCM as it is reaching an optimal cell-to-substrate stiffness value. These in vivo insights on cell-to-substrate mechanical interplay have major implications to our re-interpretation of physiological and pathological contexts.


2019 ◽  
Author(s):  
Amélie Luise Godeau ◽  
Hélène Delanoë-Ayari ◽  
Daniel Riveline

AbstractCell migration is involved in key phenomena in biology, ranging from development to cancer. Fibroblasts move between organs in 3D polymeric networks. So far, motile cells were mainly tracked in vitro on Petri dishes or on coverslips, i.e. 2D flat surfaces, which made the extrapolation to 3D physiological environments difficult. We therefore prepared 3D Cell Derived Matrix (CDM) with specific characteristics with the goal of extracting the main readouts required to measure and characterise cell motion: cell specific matrix deformation through the tracking of fluorescent fibronectin within CDM, focal contacts as the cell anchor and acto-myosin cytoskeleton which applies cellular forces. We report our method for generating this assay of physiological-like gel with relevant readouts together with its potential impact in explaining cell motility in vivo.


Sign in / Sign up

Export Citation Format

Share Document