Engineered Fibrillar Extracellular Matrices for the Study of Directed Cell Migration

Author(s):  
Brendon M. Baker ◽  
Colin K. Choi ◽  
Britta Trappmann ◽  
Christopher S. Chen

The biology of cell adhesion and migration has traditionally been studied on 2D glass or plastic surfaces. While such studies have shed light on the molecular mechanisms governing these processes [1], current knowledge is limited by the dissimilarity between the flat surfaces conventionally employed and the topographically complex extracellular matrix (ECM) cells routinely navigate within the body. On ECM-coated flat surfaces, cells are presented with an unlimited expanse of adhesive ligand and can spread and migrate freely. Conversely, the availability of ligand in vivo is generally restricted to ECM structures, forcing cells to form adhesions in prescribed locations distributed through 3D space depending on the geometry and organization of the surrounding matrix [2]. These physical constraints on cell adhesion likely have profound consequences on intracellular signaling and resulting migration, and calls into question whether the mechanisms and modes of cell motility observed on flat substrates are truly reflective of the in vivo scenario [3]. The topographies of ECMs found in vivo are varied but largely fibrillar, ranging from the tightly crosslinked fibers that form the sheet-like basement membrane, to the structure of fibrin-rich clots and collagenous connective tissues. Collagen comprises approximately 25% of the human body by mass, and as such, purified collagen has served as a popular setting for the study of cell migration within a fibrillar context for many decades [4]. However, a major limitation to the use of these gels is the inability to orthogonally dictate key structural features that impact cell behavior. For example, in contrast to the large range of fiber diameters found in vivo within connective tissue resulting from hierarchical collagen assembly and multiple types of collagens [3], collagen gels are limited to fibril diameters of ∼500nm. Furthermore, recreating the structural anisotropy common to connective tissues in collagen gels is technically challenging [5]. Thus, there remains a significant need for engineered fibrillar materials that afford precise and independent control of architectural and mechanical features for application in cell biology. In this work, we develop two approaches to fabricating fibrillar ECMs in order to study cell adhesion and migration in vitro.

2020 ◽  
Vol 31 (20) ◽  
pp. 2234-2248
Author(s):  
Maha Abedrabbo ◽  
Shoshana Ravid

Here we show that Scribble (Scrib), Lethal giant larvae 1 (Lgl1), and myosin II form a complex in vivo and colocalize at the cell leading edge of migrating cells, and this colocalization is interdependent. Scrib and Lgl1 are required for proper cell adhesion, polarity, and migration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257495
Author(s):  
Janine Riegert ◽  
Alexander Töpel ◽  
Jana Schieren ◽  
Renee Coryn ◽  
Stella Dibenedetto ◽  
...  

Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
F. M. Refaaq ◽  
X. Chen ◽  
S. W. Pang

AbstractCell migration is a fundamental process that is crucial for many biological functions in the body such as immune responses and tissue regeneration. Dysregulation of this process is associated with cancer metastasis. In this study, polydimethylsiloxane platforms with various topographical features were engineered to explore the influence of guiding patterns on MC3T3-E1 osteoblast cell migration. Focusing on the guiding effects of grating patterns, variations such as etch depth, pattern discontinuity, and bending angles were investigated. In all experiments, MC3T3-E1 cells on patterned surfaces demonstrated a higher migration speed and alignment when compared to flat surfaces. The study revealed that an increase in etch depth from 150 nm to 4.5 μm enhanced cell alignment and elongation along the grating patterns. In the presence of discontinuous elements, cell migration speed was accelerated when compared to gratings of the same etch depth. These results indicated that cell directionality preference was influenced by a high level of pattern discontinuity. On patterns with bends, cells were more inclined to reverse on 45° bends, with 69% of cells reversing at least once, compared to 54% on 135° bends. These results are attributed to cell morphology and motility mechanisms that are associated with surface topography, where actin filament structures such as filopodia and lamellipodia are essential in sensing the surrounding environment and controlling cell displacement. Knowledge of geometric guidance cues could provide a better understanding on how cell migration is influenced by extracellular matrix topography in vivo.


2002 ◽  
Vol 277 (19) ◽  
pp. 17281-17290 ◽  
Author(s):  
Gieri Camenisch ◽  
Maria Teresa Pisabarro ◽  
Daniel Sherman ◽  
Joe Kowalski ◽  
Mark Nagel ◽  
...  

Author(s):  
YUAN ZHONG ◽  
SHIJIE HE ◽  
BAOHUA JI

Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Thaline F. A. Lima ◽  
Juliana D. B. Rocha ◽  
Anderson B. Guimarães-Costa ◽  
José M. Barbosa-Filho ◽  
Débora Decoté-Ricardo ◽  
...  

Cissampelos sympodialisEichl is a plant from the Northeast and Southeast of Brazil. Its root infusion is popularly used for treatment of inflammatory and allergic diseases. We investigated whether warifteine, its main alkaloid, would have anti-inflammatory effect due to a blockage of neutrophil function.In vivowarifteine treatment inhibited casein-induced neutrophil migration to the peritoneal cavity but did not inhibit neutrophil mobilization from the bone marrow. Analysis of the direct effect of warifteine upon neutrophil adherence and migrationin vitrodemonstrated that the alkaloid decreased cell adhesion to P and E-selectin-transfected cells. In addition, fLMP-induced neutrophil migration in a transwell system was blocked by warifteine; this effect was mimicked by cAMP mimetic/inducing substances, and warifteine increased intracellular cAMP levels in neutrophils. The production of DNA extracellular traps (NETs) was also blocked by warifteine but there was no alteration on PMA-induced oxidative burst or LPS-stimulated TNFαsecretion. Taken together, our data indicate that the alkaloid warifteine is a potent anti-inflammatory substance and that it has an effect on neutrophil migration through a decrease in both cell adhesion and migration.


1989 ◽  
Vol 272 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Hynda K. Kleinman ◽  
Jeannette Graf ◽  
Yukihide Iwamoto ◽  
Makoto Sasaki ◽  
Charles S. Schasteen ◽  
...  

1996 ◽  
Vol 184 (1) ◽  
pp. 215-228 ◽  
Author(s):  
L Crisa ◽  
V Cirulli ◽  
M H Ellisman ◽  
J K Ishii ◽  
M J Elices ◽  
...  

T cell development in the thymus requires the establishment of stable interactions with cell-selecting elements such as the cortical epithelium followed by a regulated movement of selected progenitors to the medulla. Cell adhesion and migration are mediated by integrins in a number of biological systems though little is known regarding their function in the thymus. We demonstrated previously that immature CD3loCD69lo double positive human thymocytes adhere avidly to FN via the integrin, VLA4. We now demonstrate that the interaction of mature CD3hiCD69hi thymic subsets with FN triggers migration rather than firm adhesion. Migration requires the engagement of VLA4 in cooperation with VLA5 and both receptors regulate the persistence and directionality of movement. While migration capability is linked to maturation state, ligand concentration determines the efficiency of migration. In fact, FN and the alternatively spliced CS1 site are predominant in the thymic medulla, suggesting an instructive role of this ECM protein in vivo. Our studies identify a novel VLA4 and VLA5/FN-mediated pathway likely to be involved in regulating cell traffic between the cortex and medulla of the thymus. Moreover, the data provides evidence that VLA4 exists in at least two functional states at distinct stages of T cell development. While different states of VLA4 activation have been described on cell lines, this represents the first evidence supporting a biological significance for this integrin property.


Sign in / Sign up

Export Citation Format

Share Document