scholarly journals Microtubule deacetylation reduces cell stiffness to allow the onset of collective cell migration in vivo

2021 ◽  
Author(s):  
Cristian L Marchant ◽  
Abdul N Malmi-Kakkada ◽  
Jaime A Espina ◽  
Elias H Barriga

Embryogenesis, tissue repair and cancer metastasis rely on collective cell migration (CCM). In vitro studies propose that migrating cells are stiffer when exposed to stiff substrates, known to allow CCM, but softer when plated in compliant non-permissive surfaces. Here, by combining in vivo atomic force microscopy (iAFM) and modelling we reveal that to collectively migrate in vivo, cells require to dynamically decrease their stiffness in response to the temporal stiffening of their native substrate. Moreover, molecular and mechanical perturbations of embryonic tissues uncover that this unexpected cell mechanical response is achieved by a new mechanosensitive pathway involving Piezo1-mediated microtubule deacetylation. Finally, lowering microtubule acetylation and consequently cell stiffness was sufficient to allow CCM in soft non-permissive substrates, suggesting that a fixed value of substrate stiffness is not as essential for CCM as it is reaching an optimal cell-to-substrate stiffness value. These in vivo insights on cell-to-substrate mechanical interplay have major implications to our re-interpretation of physiological and pathological contexts.

2021 ◽  
Author(s):  
Maureen C. Lamb ◽  
Chathuri P. Kaluarachchi ◽  
Thiranjeewa I. Lansakara ◽  
Yiling Lan ◽  
Alexei V. Tivanski ◽  
...  

AbstractA key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This new means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maureen C Lamb ◽  
Chathuri P Kaluarachchi ◽  
Thiranjeewa I Lansakara ◽  
Samuel Q Mellentine ◽  
Yiling Lan ◽  
...  

A key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This understudied means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


2019 ◽  
Author(s):  
Shreyansh Jain ◽  
Victoire M.L. Cachoux ◽  
Gautham H.N.S. Narayana ◽  
Simon de Beco ◽  
Joseph D’Alessandro ◽  
...  

The directed migration of cell collectives is essential in various physiological processes, such as epiboly, intestinal epithelial turnover, and convergent extension during morphogenesis as well as during pathological events like wound healing and cancer metastasis1,2. Collective cell migration leads to the emergence of coordinated movements over multiple cells. Our current understanding emphasizes that these movements are mainly driven by large-scale transmission of signals through adherens junctions3,4. In this study, we show that collective movements of epithelial cells can be triggered by polarity signals at the single cell level through the establishment of coordinated lamellipodial protrusions. We designed a minimalistic model system to generate one-dimensional epithelial trains confined in ring shaped patterns that recapitulate rotational movements observed in vitro in cellular monolayers and in vivo in genitalia or follicular cell rotation5–7. Using our system, we demonstrated that cells follow coordinated rotational movements after the establishment of directed Rac1-dependent polarity over the entire monolayer. Our experimental and numerical approaches show that the maintenance of coordinated migration requires the acquisition of a front-back polarity within each single cell but does not require the maintenance of cell-cell junctions. Taken together, these unexpected findings demonstrate that collective cell dynamics in closed environments as observed in multiple in vitro and in vivo situations5,6,8,9 can arise from single cell behavior through a sustained memory of cell polarity.


2021 ◽  
Vol 32 (14) ◽  
pp. 1267-1272
Author(s):  
Lei Qin ◽  
Dazhi Yang ◽  
Weihong Yi ◽  
Huiling Cao ◽  
Guozhi Xiao

Collective cell migration is a widely observed phenomenon during animal development, tissue repair, and cancer metastasis. Considering its broad involvement in biological processes, it is essential to understand the basics behind the collective movement. Based on the topology of migrating populations, tissue-scale kinetics, called the “leader–follower” model, has been proposed for persistent directional collective movement. Extensive in vivo and in vitro studies reveal the characteristics of leader cells, as well as the special mechanisms leader cells employ for maintaining their positions in collective migration. However, follower cells have attracted increasing attention recently due to their important contributions to collective movement. In this Perspective, the current understanding of the molecular mechanisms behind the “leader–follower” model is reviewed with a special focus on the force transmission and diverse roles of leaders and followers during collective cell movement.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Development ◽  
2021 ◽  
Vol 148 (7) ◽  
pp. dev191767
Author(s):  
Jessica Stock ◽  
Andrea Pauli

ABSTRACTSelf-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.


2012 ◽  
Vol 727-728 ◽  
pp. 1638-1642
Author(s):  
Leonardo Marasca Antonini ◽  
Rafael Gomes Mielczarski ◽  
Caroline Pigatto ◽  
Iduvirges Lourdes Müller ◽  
Célia de Fraga Malfatti

Titanium and Ti alloys have been widely used as biomaterial due to their mechanical properties and high in vitro and in vivo cytocompatibility. Studies have showed that the acceleration of the osseointegration process is associated to the modification of the surface morphology. The aim of this work is to study the influence of the operating parameters of titanium electropolishing to obtain nanostructured titanium surfaces. The titanium electropolishing was carried out with different temperatures (7°C, 18°C and 25°C), current density of 0.19 A/cm2 and electropolishing time of 8 minutes. After the electropolishing process the titanium samples were characterized by Atomic Force Microscopy, profilometry (mechanical profilometer) and contact angle measurements. Preliminary results showed that the Ti nanostructured surfaces formation, strongly depends on the control of operating parameters.


2020 ◽  
Author(s):  
TT Cooper ◽  
SE Sherman ◽  
T Dayarathna ◽  
GI Bell ◽  
Jun Ma ◽  
...  

AbstractThe release of extracellular vesicles (EVs) from human multipotent stromal cells (MSC) has been proposed as a mechanism by which MSC mediate regenerative functions in vivo. Our recent work has characterized MSC derived from human pancreatic tissues (Panc-MSC) that generated a tissue regenerative secretome. Despite these advancements, it remains unknown whether regenerative stimuli are released independent or within extracellular vesicles. Herein, this study demonstrates ultrafiltration is a simple method to enrich for EVs which can be injected in murine models of tissue regeneration. The enrichment of EVs from Panc-MSC conditioned media (CM) was validated using nanoscale flow cytometry and atomic force microscopy; in addition to the exclusive detection of classical EV-markers CD9, CD81, CD63 using label-free mass spectrometry. Additionally, we identified several pro-regenerative stimuli, such as WNT5A or ANGPT1, exclusive to EV-enriched CM. Endothelial cell tubule formation was enhanced in response to both Panc-MSC CM fractions in vitro yet only intramuscular injection of EV-enriched CM demonstrated vascular regenerative functions in NOD/SCID mice with unilateral hind-limb ischemia (*<p<0.05). Furthermore, both EV-depleted and EV-enriched CM reduced hyperglycemia following intrapancreatic injection in hyperglycemic mice (**p<0.01). Collectively, understanding the functional synergy between compartments of the secretome is required to advance cell-free biotherapeutics into applications of regenerative medicine.


Author(s):  
Willow Hight-Warburton ◽  
Robert Felix ◽  
Andrew Burton ◽  
Hannah Maple ◽  
Magda S. Chegkazi ◽  
...  

Adhesion of basal keratinocytes to the underlying extracellular matrix (ECM) plays a key role in the control of skin homeostasis and response to injury. Integrin receptors indirectly link the ECM to the cell cytoskeleton through large protein complexes called focal adhesions (FA). FA also function as intracellular biochemical signaling platforms to enable cells to respond to changing extracellular cues. The α4β1 and α9β1 integrins are both expressed in basal keratinocytes, share some common ECM ligands, and have been shown to promote wound healing in vitro and in vivo. However, their roles in maintaining epidermal homeostasis and relative contributions to pathological processes in the skin remain unclear. We found that α4β1 and α9β1 occupied distinct regions in monolayers of a basal keratinocyte cell line (NEB-1). During collective cell migration (CCM), α4 and α9 integrins co-localized along the leading edge. Pharmacological inhibition of α4β1 and α9β1 integrins increased keratinocyte proliferation and induced a dramatic change in cytoskeletal remodeling and FA rearrangement, detrimentally affecting CCM. Further analysis revealed that α4β1/α9β1 integrins suppress extracellular signal-regulated kinase (ERK1/2) activity to control migration through the regulation of downstream kinases including Mitogen and Stress Activated Kinase 1 (MSK1). This work demonstrates the roles of α4β1 and α9β1 in regulating migration in response to damage cues.


2021 ◽  
Author(s):  
Sue-Hwa Lin ◽  
Yu-Chen Lee ◽  
Song-Chang Lin ◽  
Guoyu Yu ◽  
Ming Zhu ◽  
...  

Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted BMP4. Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (iTRAQ) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced osteoblasts was confirmed by immunohistochemistry of MDA-PCa118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5β1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.


Sign in / Sign up

Export Citation Format

Share Document