scholarly journals Reliability of the Dynavision task in virtual reality to explore visuomotor phenotypes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yvan Pratviel ◽  
Veronique Deschodt-Arsac ◽  
Florian Larrue ◽  
Laurent M. Arsac

AbstractDaily-life behaviors strongly rely on visuomotor integration, a complex sensorimotor process with obvious plasticity. Visual-perceptive and visual-cognitive functions are degraded by neurological disorders and brain damage, but are improved by vision training, e.g. in athletes. Hence, developing tools to evaluate/improve visuomotor abilities has found echo among psychologists, neurophysiologists, clinicians and sport professionals. Here we implemented the Dynavision visuomotor reaction task in virtual reality (VR) to get a flexible tool to place high demands on visual-perceptive and visual-cognitive processes, and explore individual abilities in visuomotor integration. First, we demonstrated high test–retest reliability for the task in VR among healthy physically-active students (n = 64, 32 females). Second, the capture of head movements thanks to the VR-headset sensors provided new and reliable information on individual visual-perceptual strategies, which added significant value to explore visuomotor phenotypes. A factor analysis of mixed data and hierarchical clustering on principal components points to head movements, video-games practice and ball-tracking sports as critical cues to draw visuomotor phenotypes among our participants. We conclude that the visuomotor task in VR is a reliable, flexible and promising tool. Since VR nowadays can serve e.g. to modulate multisensorial integration by creating visual interoceptive-exteroceptive conflicts, or placing specifically designed cognitive demand, much could be learned on complex integrated visuomotor processes through VR experiments. This offers new perspectives for post brain injury risk evaluation, rehabilitation programs and visual-cognitive training.

2021 ◽  
Author(s):  
Valentin Holzwarth ◽  
Johannes Schneider ◽  
Joshua Handali ◽  
Joy Gisler ◽  
Christian Hirt ◽  
...  

AbstractInferring users’ perceptions of Virtual Environments (VEs) is essential for Virtual Reality (VR) research. Traditionally, this is achieved through assessing users’ affective states before and after being exposed to a VE, based on standardized, self-assessment questionnaires. The main disadvantage of questionnaires is their sequential administration, i.e., a user’s affective state is measured asynchronously to its generation within the VE. A synchronous measurement of users’ affective states would be highly favorable, e.g., in the context of adaptive systems. Drawing from nonverbal behavior research, we argue that behavioral measures could be a powerful approach to assess users’ affective states in VR. In this paper, we contribute by providing methods and measures evaluated in a user study involving 42 participants to assess a users’ affective states by measuring head movements during VR exposure. We show that head yaw significantly correlates with presence, mental and physical demand, perceived performance, and system usability. We also exploit the identified relationships for two practical tasks that are based on head yaw: (1) predicting a user’s affective state, and (2) detecting manipulated questionnaire answers, i.e., answers that are possibly non-truthful. We found that affective states can be predicted significantly better than a naive estimate for mental demand, physical demand, perceived performance, and usability. Further, manipulated or non-truthful answers can also be estimated significantly better than by a naive approach. These findings mark an initial step in the development of novel methods to assess user perception of VEs.


2012 ◽  
Vol 21 (4) ◽  
pp. 423-434
Author(s):  
Marta Ferrer-García ◽  
Olaya García-Rodríguez ◽  
Irene Pericot-Valverde ◽  
Jin H. Yoon ◽  
Roberto Secades-Villa ◽  
...  

Cue exposure treatment (CET) consists of controlled and repeated exposure to drug-related stimuli in order to reduce cue-reactivity. Virtual reality (VR) has proved to be a promising tool for exposition. However, identifying the variables that can modulate the efficacy of this technique is essential for selecting the most appropriate exposure modality. The aim of this study was to determine the relation between several individual variables and self-reported craving in smokers exposed to VR environments. Forty-six smokers were exposed to seven complex virtual environments that reproduce typical situations in which people smoke. Self-reported craving was selected as the criterion variable and three types of variables were selected as the predictor variables: related to nicotine dependence, related to anxiety and impulsivity, and related to the sense of presence in the virtual environments. Sense of presence was the only predictor of self-reported craving in all the experimental virtual environments. Nicotine dependence variables added predictive power to the model only in the virtual breakfast at home. No relation was found between anxiety or impulsivity and self-reported craving. Virtual reality technology can be very helpful for improving CET for substance use disorders. However, the use of virtual environments would make sense only insofar as the sense of presence was high. Otherwise, the effectiveness of exposure might be affected.


Author(s):  
Matthew C. Hoch ◽  
Johanna M. Hoch ◽  
Cameron J. Powden ◽  
Emily H. Gabriel ◽  
Lauren A. Welsch

Background: The anterior reach distance and symmetry of the Y-Balance Test (YBT) has been associated with increased injury risk in collegiate athletes. Examining the influence of dorsiflexion range of motion (DROM) and single-limb balance (SLB) on YBT performance may identify underlying factors associated with injury risk. Objective: The purpose of this study is to determine if YBT anterior reach is related to DROM or SLB in collegiate varsity and club sport athletes. Methods: A convenience sample of 124 university varsity and club sport athletes (females: 99, age: 20.0 ± 1.6 years, height: 168.9 ± 12.5 kg, body mass: 68.8 ± 14.0 kg) completed the anterior direction of the YBT, weight-bearing DROM, and SLB components (firm and foam surface) of the Balance Error Scoring System on both limbs at one testing session. Relative symmetry was calculated by subtracting values of the left limb from the right limb. Results: For the left and right limb, normalized anterior reach distance was moderately correlated to DROM (R = .55, p < .001). Anterior reach distance and symmetry was weakly correlated to SLB and SLB symmetry (R = −.16 to −.03). Conclusion: There was a positive relationship between YBT anterior reach and weight-bearing DROM which was also observed in the between-limb symmetry. However, weak relationships were exhibited between YBT anterior reach and SLB. These findings may be useful for future injury prevention initiatives in athletic settings.


Author(s):  
Martyna Bogacz ◽  
Stephane Hess ◽  
Chiara Calastri ◽  
Charisma F. Choudhury ◽  
Alexander Erath ◽  
...  

The use of virtual reality (VR) in transport research offers the opportunity to collect behavioral data in a controlled dynamic setting. VR settings are useful in the context of hypothetical situations in which real-world data does not exist or in situations which involve risk and safety issues making real-world data collection infeasible. Nevertheless, VR studies can contribute to transport-related research only if the behavior elicited in a virtual environment closely resembles real-world behavior. Importantly, as VR is a relatively new research tool, the best-practice with regards to the experimental design is still to be established. In this paper, we contribute to a better understanding of the implications of the choice of the experimental setup by comparing cycling behavior in VR between two groups of participants in similar immersive scenarios, the first group controlling the maneuvers using a keyboard and the other group riding an instrumented bicycle. We critically compare the speed, acceleration, braking and head movements of the participants in the two experiments. We also collect electroencephalography (EEG) data to compare the alpha wave amplitudes and assess the engagement levels of participants in the two settings. The results demonstrate the ability of VR to elicit behavioral patterns in line with those observed in the real-world and indicate the importance of the experimental design in a VR environment beyond the choice of audio-visual stimuli. The findings will be useful for researchers in designing the experimental setup of VR for behavioral data collection.


2016 ◽  
Vol 24 (2) ◽  
pp. 277-289 ◽  
Author(s):  
A. Mühlberger ◽  
K. Jekel ◽  
T. Probst ◽  
M. Schecklmann ◽  
A. Conzelmann ◽  
...  

Objective: This study compares the performance in a continuous performance test within a virtual reality classroom (CPT-VRC) between medicated children with ADHD, unmedicated children with ADHD, and healthy children. Method: N = 94 children with ADHD ( n = 26 of them received methylphenidate and n = 68 were unmedicated) and n = 34 healthy children performed the CPT-VRC. Omission errors, reaction time/variability, commission errors, and body movements were assessed. Furthermore, ADHD questionnaires were administered and compared with the CPT-VRC measures. Results: The unmedicated ADHD group exhibited more omission errors and showed slower reaction times than the healthy group. Reaction time variability was higher in the unmedicated ADHD group compared with both the healthy and the medicated ADHD group. Omission errors and reaction time variability were associated with inattentiveness ratings of experimenters. Head movements were correlated with hyperactivity ratings of parents and experimenters. Conclusion: Virtual reality is a promising technology to assess ADHD symptoms in an ecologically valid environment.


Author(s):  
Yu Wang ◽  
Ziran Hu ◽  
Pengyu Li ◽  
Shouwen Yao ◽  
Hui Liu

AbstractVirtual reality (VR) has been proved as a promising tool for industrial design, but the traditional VR interface of first-person perspective (1PP) is not efficient to support assemblability assessment in narrow assembly spaces. In this paper, we proposed the multi-perspectives interface (MPI) which integrates the 1PP and the third-person perspective (3PP) using the handheld world-in-miniature (WIM). The MPI allows users to simulate the assembly operations in a natural manner similar to 1PP, while providing users with an overview of the assembly status through the WIM to assess the assemblability with superior spatial awareness. Two studies were conducted to test the performance of the proposed MPI. The first study tested user’s interaction performance in MPI using a common interaction task, which reveals stronger spatial awareness in MPI than in 1PP without the cost of losing natural interaction. Based on the results of the first study, the second study tested the performance, usability, and workload of MPI in an assemblability assessment task. The results show the advantages of MPI in the reachability evaluation in the narrow spaces. The main contribution of this paper is improving the interface and user-interface interaction in VR-aided assembly assessment system to improve user’s interaction performance and assessment ability in narrow assembly spaces.


2021 ◽  
Author(s):  
Felix C Widmer ◽  
Georg B Keller

The experience of coupling between motor output and visual feedback is necessary for the development of visuomotor skills and shapes visuomotor integration in visual cortex. Whether these experience-dependent changes involve plasticity in visual cortex remains unclear. Here, we probed the role of NMDA receptor-dependent plasticity in mouse primary visual cortex (V1) during visuomotor development. Using a conditional knockout of NMDA receptors and a photoactivatable inhibitor of CaMKII, we locally perturbed plasticity in V1 during first visual experience, recorded neuronal activity in V1, and tested the mice in a visuomotor task. We found that perturbing plasticity before, but not after, first visuomotor experience reduces responses to unpredictable stimuli, diminishes the suppression of predictable feedback in V1, and impairs visuomotor skill learning later in life. Our results demonstrate that plasticity in the local V1 circuit during early life is critical for shaping visuomotor integration.


2020 ◽  
Author(s):  
Sierra S. Nishizaki ◽  
Torrin L. McDonald ◽  
Gregory A. Farnum ◽  
Monica J. Holmes ◽  
Melissa L. Drexel ◽  
...  

AbstractBackgroundZebrafish are a foundational model organism for studying the spatio-temporal activity of genes and their regulatory sequences. A variety of approaches are currently available for editing genes and modifying gene expression in zebrafish, including RNAi, Cre/lox, and CRISPR-Cas9. However, the lac operator-repressor system, a component of the E. coli lac operon which has been adapted for use in many other species and is a valuable, flexible tool for studying the inducible modulation of gene expression, has not previously been tested in zebrafish.ResultsHere we demonstrate that the lac operator-repressor system robustly decreases expression of firefly luciferase in cultured zebrafish fibroblast cells. Our work establishes the lac operator-repressor system as a promising tool for the manipulation of gene expression in whole zebrafish.ConclusionsOur results lay the groundwork for the development of lac-based reporter assays in zebrafish, and adds to the tools available for investigating dynamic gene expression in embryogenesis. We believe that this work will catalyze the development of new reporter assay systems to investigate uncharacterized regulatory elements and their cell-type specific activities.


2021 ◽  
Vol 2 ◽  
Author(s):  
Mutian Niu ◽  
Cheng-Hung Lo ◽  
Zhiyuan Yu

As a new medium in modern education, virtual reality technology has stimulated the changes of pedagogical practice and added further opportunities for experiential learning. The immersive and interactive experience of VR fits seemingly well with practical subjects such as Creative Design. Design-related courses in secondary education usually appeal to the students with their practical elements, which also help in developing a student's creative and cognitive ability. The dual coding learning theory states that the learning process can be improved by using the symmetrical visual and language systems of the left and right hemispheres. This paper presents a novel teaching framework that combines classroom learning with VR technology. We devise the course structure based on Bloom’s Taxonomy and fill in knowledge and skills related to 3D Design. In collaboration with a local school, we implemented and delivered the proposed course to a group of students. After the course, we use questionnaires and interviews to collect and analyze the attendees’ feedback. The results show that the interactive experience in VR coincides better with the students’ perception of 3D conceptual design. The teaching methods are also well-received by them. Based on the findings, we suggest that immersive VR technology is a promising tool for developing practical courses such as product design and development.


2021 ◽  
Author(s):  
Philip R L Parker ◽  
Eliott T T Abe ◽  
Natalie T Beatie ◽  
Emmalyn S P Leonard ◽  
Dylan M Martins ◽  
...  

In natural contexts, sensory processing and motor output are closely coupled, which is reflected in the fact that many brain areas contain both sensory and movement signals. However, standard reductionist paradigms decouple sensory decisions from their natural motor consequences, and head-fixation prevents the natural sensory consequences of self-motion. In particular, movement through the environment provides a number of depth cues beyond stereo vision that are poorly understood. To study the integration of visual processing and motor output in a naturalistic task, we investigated distance estimation in freely moving mice. We found that mice use vision to accurately jump across a variable gap, thus directly coupling a visual computation to its corresponding ethological motor output. Monocular eyelid suture did not affect performance, thus mice can use cues that do not depend on binocular disparity and stereo vision. Under monocular conditions, mice performed more vertical head movements, consistent with the use of motion parallax cues, and optogenetic suppression of primary visual cortex impaired task performance. Together, these results show that mice can use monocular cues, relying on visual cortex, to accurately judge distance. Furthermore, this behavioral paradigm provides a foundation for studying how neural circuits convert sensory information into ethological motor output.


Sign in / Sign up

Export Citation Format

Share Document