scholarly journals Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jacintha G. B. van Dijk ◽  
Samuel A. Iverson ◽  
H. Grant Gilchrist ◽  
N. Jane Harms ◽  
Holly L. Hennin ◽  
...  

AbstractAvian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population.

2019 ◽  
Vol 18 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Emanuela Onesti ◽  
Vittorio Frasca ◽  
Marco Ceccanti ◽  
Giorgio Tartaglia ◽  
Maria Cristina Gori ◽  
...  

Background: The cannabinoid system may be involved in the humoral mechanisms at the neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients modifying the stability of ACh receptor (AChR) function. <p> Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis (MG) on muscular fatigue and neurophysiological changes. <p> Method: The duration of this open pilot study, which included an intra-individual control, was three weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a possible immunomodulatory effect of PEA in MG patients. <p> Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response. Antibody titers did not change significantly after treatment. <p> Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.


2021 ◽  
pp. 194855062199962
Author(s):  
Jennifer S. Trueblood ◽  
Abigail B. Sussman ◽  
Daniel O’Leary

Development of an effective COVID-19 vaccine is widely considered as one of the best paths to ending the current health crisis. While the ability to distribute a vaccine in the short-term remains uncertain, the availability of a vaccine alone will not be sufficient to stop disease spread. Instead, policy makers will need to overcome the additional hurdle of rapid widespread adoption. In a large-scale nationally representative survey ( N = 34,200), the current work identifies monetary risk preferences as a correlate of take-up of an anticipated COVID-19 vaccine. A complementary experiment ( N = 1,003) leverages this insight to create effective messaging encouraging vaccine take-up. Individual differences in risk preferences moderate responses to messaging that provides benchmarks for vaccine efficacy (by comparing it to the flu vaccine), while messaging that describes pro-social benefits of vaccination (specifically herd immunity) speeds vaccine take-up irrespective of risk preferences. Findings suggest that policy makers should consider risk preferences when targeting vaccine-related communications.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Mingjuan Yin ◽  
Yongzhen Xiong ◽  
Dongmei Liang ◽  
Hao Tang ◽  
Qian Hong ◽  
...  

Abstract Background An estimated 5–10 % of healthy vaccinees lack adequate antibody response following receipt of a standard three-dose hepatitis B vaccination regimen. The cellular mechanisms responsible for poor immunological responses to hepatitis B vaccine have not been fully elucidated to date. Methods There were 61 low responders and 56 hyper responders involved in our study. Peripheral blood samples were mainly collected at D7, D14 and D28 after revaccinated with a further dose of 20 µg of recombinant hepatitis B vaccine. Results We found low responders to the hepatitis B vaccine presented lower frequencies of circulating follicular helper T (cTfh) cells, plasmablasts and a profound skewing away from cTfh2 and cTfh17 cells both toward cTfh1 cells. Importantly, the skewing of Tfh cell subsets correlated with IL-21 and protective antibody titers. Based on the key role of microRNAs involved in Tfh cell differentiation, we revealed miR-19b-1 and miR-92a-1 correlated with the cTfh cell subsets distribution and antibody production. Conclusions Our findings highlighted a decrease in cTfh cells and specific subset skewing contribute to reduced antibody responses in low responders.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1290
Author(s):  
Chiara Arcangeli ◽  
Daniele Lucarelli ◽  
Martina Torricelli ◽  
Carla Sebastiani ◽  
Marcella Ciullo ◽  
...  

Maedi-visna virus (MVV) and caprine arthritis encephalitis virus (CAEV), referred to as small ruminant lentiviruses (SRLVs), belong to the genus Lentivirus of the Retroviridae family. SRLVs infect both sheep and goats, causing significant economic losses and animal welfare damage. Recent findings suggest an association between serological status and allelic variants of different genes such as TMEM154, TLR9, MYD88 and CCR5. The aim of this work was to investigate the role of specific polymorphisms of these genes in SRLVs infection in some sheep flocks in Italy. In addition to those already known, novel variants in the TMEM154 (P7H, I74V, I105V) gene were detected in this study. The risk of infection was determined finding an association between the serological status and polymorphisms P7H, E35K, N70I, I74V, I105V of TMEM154, R447Q, A462S and G520R in TLR9 gene, H176H* and K190K* in MYD88 genes, while no statistical association was observed for the 4-bp deletion of the CCR5 gene. Since no vaccines or treatments have been developed, a genetically based approach could be an innovative strategy to prevent and to control SRLVs infection. Our findings are an important starting point in order to define the genetic resistance profile towards SRLVs infection.


2015 ◽  
Vol 93 (10) ◽  
pp. 755-764 ◽  
Author(s):  
A. Viain ◽  
M. Guillemette ◽  
J.-P.L. Savard

Body and organ dynamics, during remigial moult, have been mainly explored on geese, dabbling ducks, and foot-propelled diving ducks, but weakly on sea ducks. This study investigated the internal changes in a wing–foot-propelled sea duck to determine the adaptive strategies implemented. Forty-five male Common Eiders (Atlantic) (Somateria mollissima dresseri Sharpe, 1871), collected in the Gulf of St. Lawrence, were dissected; their body mass, muscle mass, and organ sizes were measured. We tested three hypotheses: (1) S. m. dresseri use a strategic reduction of body mass to reduce the flightlessness duration; (2) organs will exhibit changes consistent with a trade-off between function and maintenance to save and reallocate energy and proteins to feather growth; (3) S. m. dresseri would show lower flight muscle reduction than foot-propelled diving ducks. Somateria mollissima dresseri did not lose body mass, which does not support the first hypothesis. Atrophy of the heart followed by hypertrophy and opposite changes in leg muscle mass and gizzard mass are consistent with the second hypothesis. Flight muscle mass showed lower variations than in other ducks, validating the third hypothesis. We also suggest that the lipid depletion observed early in the moult could be a strategy to reduce foraging effort and minimize the risk of damaging the growing feathers.


Sign in / Sign up

Export Citation Format

Share Document