scholarly journals Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suganya Kannan ◽  
Anitta Solomon ◽  
Govindan Krishnamoorthy ◽  
Murugan Marudhamuthu

AbstractIn the present study lipopeptide biosurfactant with high emulsification capacity produced by human skin bacterium Paenibacillus thiaminolyticus was purified and subjected to FTIR and NMR spectral analysis which gave evidence of the active characteristics of the surfactant. To augment the antivirulent potential further, the mixer of copper and copper oxide nanoparticles (CuNPs) was synthesized, and characterized by UV–Visible spectroscopy, SEM-EDAX, TEM, and Zeta analysis. Here, we attempted to enhance the antimicrobial and antibiofilm activity with the assistance of encapsulated preparation of lipopeptide and CuNPs in multilamellar liposomes. The proposed mechanism of action of lipopeptide and CuNPs liposomal preparation negatively influences the cell metabolism, secreted virulence such as staphyloxanthin, pyocyanin, and extracellular polysaccharides. The significant decline in the growth of MRSA and P. aeruginosa in both planktonic form and biofilm by lipopeptide and CuNPs treatment were visualized using scanning electron microscopy and High content screening imaging system. In vivo studies revealed that treatment with lipopeptide and CuNPs in multilamellar liposomes extended the lifespan of infected Caenorhabditis elegans by about 75%. Therefore, this study typifies lipopeptide and CuNPs could credibly be a substantial substitute over conventional antibiotics in averting the biofilm associated pathogenesis of MRSA and P. aeruginosa.

2014 ◽  
Vol 306 (5) ◽  
pp. R281-R290 ◽  
Author(s):  
Tyler S. Nelson ◽  
Ryan E. Akin ◽  
Michael J. Weiler ◽  
Timothy Kassis ◽  
Jeffrey A. Kornuta ◽  
...  

The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (Peff, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased Peff of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of Peff and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.


2019 ◽  
Vol 7 (9) ◽  
pp. 278 ◽  
Author(s):  
Lorenzo

The advent of multidrug resistance among pathogenic bacteria is devastating the worth of antibiotics and changing the way of their administration, as well as the approach to use new or old drugs. The crisis of antimicrobial resistance is also due to the unavailability of newer drugs, attributable to exigent regulatory requirements and reduced financial inducements. The emerging resistance to antibiotics worldwide has led to renewed interest in old drugs that have fallen into disuse because of toxic side effects. Thus, comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms and optimize the use of old antimicrobial agents able to maintain their profile of susceptibility. Chloramphenicol is experiencing its renaissance because it is widely used in the treatment and prevention of superficial eye infections due to its broad spectrum of activity and other useful antimicrobial peculiarities, such as the antibiofilm properties. Concerns have been raised in the past for the risk of aplastic anemia when chloramphenicol is given intravenously. Chloramphenicol seems suitable to be used as topical eye formulation for the limited rate of resistance compared to fluoroquinolones, for its scarce induction of bacterial resistance and antibiofilm activity, and for the hypothetical low impact on ocular microbiota disturbance. Further in-vitro and in vivo studies on pharmacodynamics properties of ocular formulation of chloramphenicol, as well as its real impact against biofilm and the ocular microbiota, need to be better addressed in the near future.


2005 ◽  
Vol 73 (5) ◽  
pp. 2818-2827 ◽  
Author(s):  
Ganwu Li ◽  
Claudia Laturnus ◽  
Christa Ewers ◽  
Lothar H. Wieler

ABSTRACT Infections with avian pathogenic Escherichia coli (APEC) cause colibacillosis, an acute and largely systemic disease resulting in significant economic losses in poultry industry worldwide. Although various virulence-associated genes have been identified in APEC, their actual role in pathogenesis is still not fully understood, and, furthermore, certain steps of the infection process have not been related to previously identified factors. Here we describe the application of a signature-tagged transposon mutagenesis (STM) approach to identify critical genes required for APEC infections in vivo. Twenty pools of about 1,800 IMT5155 (O2:H5) mutants were screened in an infection model using 5-week-old chickens, and potentially attenuated mutants were subjected to a secondary screen and in vivo competition assays to confirm their attenuation. A total of 28 genes required for E. coli septicemia in chickens were identified as candidates for further characterization. Among these disrupted genes, six encode proteins involved in biosynthesis of extracellular polysaccharides and lipopolysaccharides; two encode iron transporters that have not been previously characterized in APEC in in vivo studies, and four showed similarity to membrane or periplasmic proteins. In addition, several metabolic enzymes, putative proteins with unknown function, and open reading frames with no similarity to other database entries were identified. This genome-wide analysis has identified both novel and previously known factors potentially involved in pathogenesis of APEC infection.


Endocrinology ◽  
2000 ◽  
Vol 141 (4) ◽  
pp. 1442-1445 ◽  
Author(s):  
Alan M. Rice ◽  
John N. Fain ◽  
Scott A. Rivkees

Abstract A1 adenosine receptors (A1ARs) are heavily expressed in adipocytes and influence fat cell metabolism. Because increasing evidence suggests a role for leptin in mediating appetite and fat cell metabolism, we tested whether A1ARs regulate leptin production. Rats were treated with the A1AR agonist N6-cyclopentyladenosine (CPA), and changes in circulating levels of leptin and leptin gene expression were examined. Serum leptin levels rose 2- to 10-fold, with peak increases seen 8–16 h after injection of CPA (P < 0.05). In contrast, CPA did not alter steady state levels of adipose tissue leptin mRNA. To assess the influence of endogenous adenosine on circulating leptin levels, rats were also injected with dipyridamole (DPY), an adenosine reuptake blocker. DPY induced 80% increases in serum levels at 8 h after injections (P < 0.05). Supporting the idea that stimulation of leptin production is A1AR mediated, pretreatment with the A1AR antagonist 8-cyclopentyl-1,3-dipropylxanthine completely blocked increases in leptin levels after DPY treatment. To complement in vivo studies, the effect of A1AR activation on leptin secretion was also studied in epididymal fat pad cultures. In cultures, CPA treatment increased leptin secretion by 37% (P < 0.05). Collectively, these data show that the adenosinergic system can increase leptin secretion by directly activating A1ARs in fat tissue.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00019 ◽  
Author(s):  
Moinuddin Hassan ◽  
Jason Riley ◽  
Victor Chernomordik ◽  
Paul Smith ◽  
Randall Pursley ◽  
...  

In this article, a fluorescence lifetime imaging system for small animals is presented. Data were collected by scanning a region of interest with a measurement head, a linear fiber array with fixed separations between a single source fiber and several detection fibers. The goal was to localize tumors and monitor their progression using specific fluorescent markers. We chose a near-infrared contrast agent, Alexa Fluor 750 (Invitrogen Corp., Carlsbad, CA). Preliminary results show that the fluorescence lifetime for this dye was sensitive to the immediate environment of the fluorophore (in particular, pH), making it a promising candidate for reporting physiologic changes around a fluorophore. To quantify the intrinsic lifetime of deeply embedded fluorophores, we performed phantom experiments to investigate the contribution of photon migration effects on observed lifetime by calculating the fluorescence intensity decay time. A previously proposed theoretical model of migration, based on random walk theory, is also substantiated by new experimental data. The developed experimental system has been used for in vivo mouse imaging with Alexa Fluor 750 contrast agent conjugated to tumor-specific antibodies (trastuzumab [Herceptin]). Three-dimensional mapping of the fluorescence lifetime indicates lower lifetime values in superficial breast cancer tumors in mice.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 197
Author(s):  
Ilya Turchin ◽  
Shazia Bano ◽  
Mikhail Kirillin ◽  
Anna Orlova ◽  
Valeriya Perekatova ◽  
...  

The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between −14.9 ± 1.04 to −16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs’ therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Depeng Wang ◽  
Huijuan Zhang ◽  
Tri Vu ◽  
Ye Zhan ◽  
Akash Malhotra ◽  
...  

AbstractFunctional intestinal imaging holds importance for the diagnosis and evaluation of treatment of gastrointestinal diseases. Currently, preclinical imaging of intestinal motility in animal models is performed either invasively with excised intestines or noninvasively under anesthesia, and cannot reveal intestinal dynamics in the awake condition. Capitalizing on near-infrared optics and a high-absorbing contrast agent, we report the Trans-illumination Intestine Projection (TIP) imaging system for free-moving mice. After a complete system evaluation, we performed in vivo studies, and obtained peristalsis and segmentation motor patterns of free-moving mice. We show the in vivo typical segmentation motor pattern, that was previously shown in ex vivo studies to be controlled by intestinal pacemaker cells. We also show the effects of anesthesia on motor patterns, highlighting the possibility to study the role of the extrinsic nervous system in controlling motor patterns, which requires unanesthetized live animals. Combining with light-field technologies, we further demonstrated 3D imaging of intestine in vivo (3D-TIP). Importantly, the added depth information allows us to extract intestines located away from the abdominal wall, and to quantify intestinal motor patterns along different directions. The TIP system should open up avenues for functional imaging of the GI tract in conscious animals in natural physiological states.


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


Sign in / Sign up

Export Citation Format

Share Document