scholarly journals Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Golnaz Anvari ◽  
Evangelia Bellas

AbstractIn obese adipose tissue (AT), hypertrophic expansion of adipocytes is not matched by new vessel formation, leading to AT hypoxia. As a result, hypoxia inducible factor-1⍺ (HIF-1⍺) accumulates in adipocytes inducing a transcriptional program that upregulates profibrotic genes and biosynthetic enzymes such as lysyl oxidase (LOX) synthesis. This excess synthesis and crosslinking of extracellular matrix (ECM) components cause AT fibrosis. Although fibrosis is a hallmark of obese AT, the role of fibroblasts, cells known to regulate fibrosis in other fibrosis-prone tissues, is not well studied. Here we have developed an in vitro model of AT to study adipocyte-fibroblast crosstalk in a hypoxic environment. Further, this in vitro model was used to investigate the effect of hypoxia on adipocyte mechanical properties via ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinases (ROCK) signaling pathways. We confirmed that hypoxia creates a diseased phenotype by inhibiting adipocyte maturation and inducing actin stress fiber formation facilitated by myocardin-related transcription factor A (MRTF-A/MKL1) nuclear translocation. This work presents new potential therapeutic targets for obesity by improving adipocyte maturation and limiting mechanical stress in obese AT.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Jiao ◽  
Wang Tang ◽  
He Huang ◽  
Zhaofei Zhang ◽  
Donghua Liu ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in tissue engineering for regenerative medicine due to their multipotent differentiation potential. However, their poor migration ability limits repair effects. Icariin (ICA), a major component of the Chinese medical herb Herba Epimedii, has been reported to accelerate the proliferation, osteogenic, and chondrogenic differentiation of BMSCs. However, it remains unknown whether ICA can enhance BMSC migration, and the possible underlying mechanisms need to be elucidated. In this study, we found that ICA significantly increased the migration capacity of BMSCs, with an optimal concentration of 1 μmol/L. Moreover, we found that ICA stimulated actin stress fiber formation in BMSCs. Our work revealed that activation of the MAPK signaling pathway was required for ICA-induced migration and actin stress fiber formation. In vivo, ICA promoted the recruitment of BMSCs to the cartilage defect region. Taken together, these results show that ICA promotes BMSC migration in vivo and in vitro by inducing actin stress fiber formation via the MAPK signaling pathway. Thus, combined administration of ICA with BMSCs has great potential in cartilage defect therapy.


2007 ◽  
Vol 361-363 ◽  
pp. 1055-1058 ◽  
Author(s):  
Miho Nakamura ◽  
Akiko Nagai ◽  
Natalie Ohashi ◽  
Yumi Tanaka ◽  
Yasutaka Sekijima ◽  
...  

The osteoblast adhesion to the substrates are recognized to play a fundamental role in osteoconduction process. The purpose of this study was to evaluate the in vitro behavior of osteoblasts cultured on polarized hydroxyapatite (HA), having the enhanced osteobonding abilities. Osteoblast-like cells were seeded onto the polarized HA and investigated the adhesion and motility. The polarization had no effects on the percentage of the number of the spreaded cells against all the adhered cells, but had significant effects on the elongation of adhered cells from fluorescent observation and on the cell motility showed by the wound healing assay. The charges induced on the HA surface accelerated the cytoskeleton reorganization of the adhered cells cultured on HA specimens. The acceleration was emerged as the cells shape, actin filament pattern such as stress fiber formation, and the prolongation of the cell movement distances.


2007 ◽  
Vol 293 (1) ◽  
pp. H366-H375 ◽  
Author(s):  
MaryEllen Carlile-Klusacek ◽  
Victor Rizzo

The vasoactive protease thrombin is a known activator of the protease-activated receptor-1 (PAR1) via cleavage of its NH2 terminus. PAR1 activation stimulates the RhoA/Rho kinase signaling cascade, leading to myosin light chain (MLC) phosphorylation, actin stress fiber formation, and changes in endothelial monolayer integrity. Previous studies suggest that some elements of this signaling pathway are localized to caveolin-containing cholesterol-rich membrane domains. Here we show that PAR1 and key components of the PAR-associated signaling cascade localize to membrane rafts and caveolae in bovine aortic endothelial cells (BAEC). To investigate the functional significance of this localization, BAEC were pretreated with filipin (5 μg/ml, 5 min) to ablate lipid rafts before thrombin (100 nM) or PAR agonist stimulation. We found that diphosphorylation of MLC and the actin stress fiber formation normally induced by PAR activation were attenuated after lipid raft disruption. To target caveolae specifically, we used a small interferring RNA approach to knockdown caveolin-1 expression. Thrombin-induced MLC phosphorylation and stress fiber formation were not altered in caveolin-1-depleted cells, suggesting that lipid rafts, but not necessarily caveolae, modulate thrombin-activated signaling pathways leading to alteration of the actin cytoskeleton in endothelial cells.


2002 ◽  
Vol 227 (6) ◽  
pp. 412-424 ◽  
Author(s):  
Imre L. Szabó ◽  
Rama Pai ◽  
Michael K. Jones ◽  
George R. Ehring ◽  
Hirofumi Kawanaka ◽  
...  

Repair of superficial gastric mucosal injury is accomplished by the process of restitution—migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.


2015 ◽  
Vol 168 (3-4) ◽  
pp. 249-257 ◽  
Author(s):  
Laura Garza-Cuartero ◽  
Elaine McCarthy ◽  
Joseph Brady ◽  
Joseph Cassidy ◽  
Clare Hamilton ◽  
...  

2007 ◽  
Vol 27 (18) ◽  
pp. 6323-6333 ◽  
Author(s):  
Nebojsa Knezevic ◽  
Arun Roy ◽  
Barbara Timblin ◽  
Maria Konstantoulaki ◽  
Tiffany Sharma ◽  
...  

ABSTRACT We identified the GDI-1-regulated mechanism of RhoA activation from the Rho-GDI-1 complex and its role in mediating increased endothelial permeability. Thrombin stimulation failed to induce RhoA activation and actin stress fiber formation in human pulmonary arterial endothelial cells transduced with full-length GDI-1. Expression of a GDI-1 mutant form (C-GDI) containing the C terminus (aa 69 to 204) also prevented RhoA activation, whereas further deletions failed to alter RhoA activation. We observed that protein kinase Cα-mediated phosphorylation of the C terminus of GDI-1 at Ser96 reduced the affinity of GDI-1 for RhoA and thereby enabled RhoA activation. Rendering GDI-1 phosphodefective with a Ser96 → Ala substitution rescued the inhibitory activity of GDI-1 toward RhoA but did not alter the thrombin-induced activation of other Rho GTPases, i.e., Rac1 and Cdc42. Phosphodefective mutant GDI-1 also suppressed myosin light chain phosphorylation, actin stress fiber formation, and the increased endothelial permeability induced by thrombin. In contrast, expressing the phospho-mimicking mutant S96D-GDI-1 protein induced RhoA activity and increased endothelial permeability independently of thrombin stimulation. These results demonstrate the crucial role of the phosphorylation of the C terminus of GDI-1 at S96 in selectively activating RhoA. Inhibiting GDI-1 phosphorylation at S96 is a potential therapeutic target for modulating RhoA activity and thus preventing the increase in endothelial permeability associated with vascular inflammation.


2007 ◽  
Vol 213 (3) ◽  
pp. 740-749 ◽  
Author(s):  
Andrea Dorfleutner ◽  
Christian Stehlik ◽  
Jing Zhang ◽  
Gary E. Gallick ◽  
Daniel C. Flynn

Sign in / Sign up

Export Citation Format

Share Document