scholarly journals Equivalent method for obtaining concrete age on the basis of electrical resistivity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaochun Lu ◽  
Fuguo Tong ◽  
Xinyuan Zha ◽  
Gang Liu

AbstractConcrete age is the time since the moment water is added to the cement, and the age of concrete comprehensively reflects the physical properties of the concrete when curing under standard conditions. For concrete under nonstandard conditions, its physical properties are directly related to both its age and temperature history. The equivalent age of concrete is the time at which concrete under nonstandard conditions reaches the same state as concrete under standard conditions. Most equivalent methods, such as the Nurse-Saul function and the Arrhenius function, are based on a maturity index. However, the accuracy of these methods breaks down when the curing temperature range is wide. In this paper, the electrical resistivity of concrete is used as the index to determine the equivalent age of concrete. This method is based on the assumption that concrete with the same mixture proportions has the same electrical resistivity when the maturity of the concrete is the same, regardless of the curing history. The proposed method is advantageous because it can be performed in real time and is nondestructive. To constantly measure the electrical resistivity of concrete, an automatic data acquisition system is developed to monitor the electrical resistivity of concrete and reduce the error caused by polarization as much as possible. Then, a model for predicting the electrical resistivity of concrete under different curing temperatures is proposed to conveniently calculate the equivalent coefficient. Finally, the results calculated by the proposed equivalent method are compared with those of the standard method (Nurse-Saul equation), and the results of the proposed model are found to be more reasonable.

Alloy Digest ◽  
1960 ◽  
Vol 9 (4) ◽  

Abstract EVANOHM is a nickel-base alloy having low temperature coefficient of resistance and high electrical resistivity. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on joining. Filing Code: Ni-57. Producer or source: Wilbur B. Driver Company.


Alloy Digest ◽  
1989 ◽  
Vol 38 (7) ◽  

Abstract EVANOHM alloy S offers optimum stability and flexibility with regard to both size and required temperature coefficient of resistance. Its extremely low electromotive force vs copper together with its high electrical resistivity are highly desirable properties in a precision resistance wire. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-373. Producer or source: Wilbur B. Driver Company.


2015 ◽  
Vol 15 (5) ◽  
pp. 580-583 ◽  
Author(s):  
Sungeun Heo ◽  
Changmin Kim ◽  
Byoungho Lee ◽  
Youngmin Lee ◽  
Sejoon Lee ◽  
...  

2003 ◽  
Vol 125 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Jonghyun Kim ◽  
Tess J. Moon ◽  
John R. Howell

Fully-transient, two-dimensional, heat transfer analysis for the simultaneous tape winding and in-situ curing of composite cylinders is presented. During processing, the orthotropic composites are continuously wound onto an isotropic mandrel and cured simultaneously by infrared (IR) heating. To most efficiently and effectively consider the continual accretion of composite, the model is formulated within a Lagrangian reference frame in which the heating source rotates while the coordinate system and composite are stationary. This enables prediction of composite temperature and degree-of-cure history from the first to last layer. Separate heat conduction equations are formulated for both the mandrel and composite cylinder. The composite cylinder’s outer surface is modeled as a moving boundary due to the accumulated layers. Exothermic heat generation due to the epoxy resin’s chemical reaction is included as a function of temperature and degree of cure. Numerical simulations using a control-volume-based finite difference method are run for a common graphite/epoxy (AS4/3501-6) composite. The Lagrangian approach was found to more accurately predict the in-situ curing temperature and degree-of-cure histories than the previously used, quasi-steady-state Eulerian approaches, which underpredict thermal losses. The model and its computational implementation were verified using analytical solutions and actual experiments. During winding, the top layer’s maximum temperature increases with total number of layers wound, demonstrating that a given incoming prepreg tape’s temperature history evolves with time. Moreover, with appropriate mandrel preheating, the inner layers can reach a very high degree of cure by the end of the winding process, revealing that the mandrel’s initial temperature has a significant effect on the composite’s temperature and degree-of-cure history. Substantial increases in the winding speed have little or no effect on the composite’s temperature history, but can significantly reduce the corresponding degree-of-cure. The development of structurally debilitating residual stresses are an important concern in selecting process parameters, such as winding speed and heating power. Taking advantage of the strong correlation between winding speed and IR heat flux, process windows can be used to guide the selection of manufacturing process parameters. These definitively show that there are thermodynamically imposed limits on how fast the cylinders may be wound and radiatively cured.


2017 ◽  
Vol 35 (1) ◽  
pp. 173-180 ◽  
Author(s):  
A. Kavitha ◽  
R. Kannan ◽  
S. Rajashabala

AbstractThe present paper describes the effect of target power on the properties of Ti thin films prepared by DC magnetron sputtering with (triode mode) and without (diode mode) supported discharge. The traditional diode magnetron sputtering with an addition of a hot filament has been used to sustain the discharge at a lower pressure. The effect of target power (60, 80, 100 and 120 W) on the physical properties of Ti thin films has been studied in diode and triode modes. XRD studies showed that the Ti thin films prepared at a target power up to 100 W in diode mode were amorphous in nature. The Ti thin films exhibited crystalline structure at much lower target power of 80 W with a preferred orientation along (0 0 2) plane. The grain size of Ti thin films prepared in triode mode increased from 64 nm to 80 nm, whereas in diode mode, the grain size increased from 2 nm to 5 nm. EDAX analysis confirmed that the incorporation of reactive gases was lower in triode mode compared to diode mode. The electrical resistivity of Ti thin films deposited in diode mode was found to be 85 µΩ⋅cm (target power 120 W). The electrical resistivity of Ti thin films in triode mode was found to be deceased to 15.2 µΩ⋅cm (target power 120 W).


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2013 ◽  
Vol 353-356 ◽  
pp. 3256-3262
Author(s):  
Pei Fang Su ◽  
Xing Li Lu

In order to analysis thermal stress of mass concrete accurately, material properties of mass concrete are studied by numerical simulation method, and the equivalent age is introduced to describe the mechanical properties of concrete. The calculation models of concrete mechanical parameters are summarized, and then the calculation procedures are established on the basis of equivalent age. In this way, the temperature and temperature history are considered in these models. Meanwhile, the governing equation and computer program of the thermal stress based on the equivalent age are developed. The comparison of the numerical example using proposed method and conventional FEM method shows that the proposed method performs more adaptable and accurate.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 310-317 ◽  
Author(s):  
Christian JANOT

Quasiperiodic structures can be described as physical irrational cut of structures which are periodic in higher dimensional spaces. Such a so-called quasicrystallography approach has been applied to several real quasicrystals. The Fourier components of these structures are densely distributed in the reciprocal space. This is at the origin of physical properties which may sound ackward for metallic systems. For instance, the electrical resistivity reaches very large values.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1354-1360 ◽  
Author(s):  
A. Guillen ◽  
V. Menichetti

The nonuniqueness of gravity or magnetic data inversion is well known. In order to remove ambiguity, some authors have sought solutions minimizing a functional describing geometrical or physical properties. Last and Kubik (1983), in particular, developed a method explaining the observed anomaly by structures of minimum volume. In this method the domain where anomalous sources are searched is divided into elementary prisms of a constant density or susceptibility contrast. Each elementary contrast is allowed to vary individually. Thus a contrast distribution is computed. The search for this kind of solution leads in general to geologically more appropriate bodies, but exceptions do occur. In this paper, the technique is broadened to include the search for solutions minimizing the moment of inertia with respect to the center of gravity or with respect to a given dip line passing through it. The resulting structures are both deeper and more compact, precisely as is required in specific cases. Theoretical and actual examples illustrate this flexible inversion technique.


Sign in / Sign up

Export Citation Format

Share Document