scholarly journals Visual feedback improves bimanual force control performances at planning and execution levels

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyun Joon Kim ◽  
Joon Ho Lee ◽  
Nyeonju Kang ◽  
James H. Cauraugh

AbstractThe purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.

2021 ◽  
Author(s):  
Hyun Joon Kim ◽  
Joon Ho Lee ◽  
Nyeonju Kang ◽  
James H. Cauraugh

Abstract The purpose of this study was to determine whether altered interlimb coordination patterns across trials improved bimanual force control capabilities within a trial. Fourteen healthy young participants completed bimanual force control tasks at 5%, 25%, and 50% of maximum voluntary contraction with and without visual feedback. To estimate synergetic coordination patterns between hands across multiple trials, we analyzed our primary outcome measure by performing an uncontrolled manifold analysis. In addition, we calculated force accuracy, variability, and regularity within a trial to quantify task stabilization. Using Pearson’s correlation analyses, we determined the relation between the changes in bilateral motor synergies (i.e., a proportion of good variability relative to bad variability) and bimanual force control performance from no-vision to vision conditions. The findings revealed that the presence of visual feedback significantly increased bilateral motor synergies with a reduction of bad variability components across multiple trials, and decreased force error, variability, and regularity within a trial. Further, we observed significant positive correlations between higher bilateral motor synergies and increased improvements in force control capabilities. These findings suggested that bimanual synergetic coordination behaviors at the planning level modulated by external sensory feedback may be related to advanced task stabilization patterns at the execution level.


2019 ◽  
Vol 27 (4) ◽  
pp. 267-275
Author(s):  
Yan Jin ◽  
JiWon Seong ◽  
YoungChae Cho ◽  
BumChul Yoon

Aging-induced degeneration of the neuromuscular system would result in deteriorated complex muscle force coordination and difficulty in executing daily activities that require both hands. The aim of this study was to provide a basic description of how aging and dual-task activity would affect the motor control strategy during bimanual isometric force control in healthy adults. In total, 17 young adults (aged 25.1 ± 2.4 years) and 14 older adults (aged 72.6 ± 3.4 years) participated in the study. The subjects were instructed to press both hands simultaneously to match the 1 Hz sine curve force under two conditions (with or without calculation) with continuous visual feedback. Differences in bimanual motor synergy, bimanual coordination, force accuracy, force variability, and calculation speed were compared. This study found that the specific motor control strategy of older adults involved a decreased bimanual force control ability with both increased VUCM and VORT, and was not influenced by dual tasking. These findings might have implications for establishing interventions for aging-induced hand force control deficits.


2019 ◽  
Vol 27 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Yan Jin ◽  
Minhee Kim ◽  
Sejun Oh ◽  
BumChul Yoon

This study aimed to provide a basic description of the motor control strategy during bimanual isometric force control in healthy young adults. Thirty healthy young adults (mean age: 27.4 ± 3.7 years) participated in the study. The subjects were instructed to press both hands simultaneously to match the target force level of 5%, 25%, and 50% bimanual maximum voluntary force using continuous visual feedback. Bimanual motor synergy and bimanual coordination, as well as force asymmetry, force accuracy, and force variability were compared. This study identified the specific motor control strategy of healthy young adults during bimanual isometric force control, indicating that they proportionally increased “good” and “bad” variabilities, resulting in comparable bimanual motor synergy as the target force level increased.


2016 ◽  
Vol 115 (6) ◽  
pp. 2924-2930 ◽  
Author(s):  
Seoung Hoon Park ◽  
MinHyuk Kwon ◽  
Danielle Solis ◽  
Neha Lodha ◽  
Evangelos A. Christou

Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age ( P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz ( R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units ( r = 0.66) and modulation from 0 to 4 Hz ( r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Nyeonju Kang ◽  
Lisa M. Roberts ◽  
Clara Aziz ◽  
James H. Cauraugh

Abstract Background Ageing may cause impairments in executing bilateral movement control. This study investigated age-related changes in interlimb force coordination across multiple trials by quantifying bilateral motor synergies based on the uncontrolled manifold hypothesis. Participants completed the trials with and without visual feedback. Methods Twenty healthy individuals (10 older adults and 10 young adults) performed 12 isometric force control trials for the two vision conditions at 5% of maximal voluntary contraction. All dependent variables were analyzed in two-way mixed model (Group × Vision Condition; 2 × 2) ANOVAs with repeated measures on the last factor. Results The analyses revealed that older adults had greater mean force produced by two hands in both vision conditions (i.e., yes and no visual feedback). Across both vision conditions, the older adult group showed greater asymmetrical force variability (i.e., standard deviation of non-dominant hand > standard deviation of dominant hand) and revealed more positive correlation coefficients between forces produced by two hands as compared with the young adult group. Finally, an index of bilateral motor synergies was significantly greater in young adults than older adults when visual feedback was available. Conclusion The current findings indicate that deficits in interlimb force coordination across multiple trials appeared in older adults.


2011 ◽  
Vol 111 (5) ◽  
pp. 1290-1295 ◽  
Author(s):  
John W. Chow ◽  
Dobrivoje S. Stokic

We tested the hypothesis that force variability and error during maintenance of submaximal isometric knee extension are greater in subacute stroke patients than in controls and are related to motor impairments. Contralesional (more-affected) and ipsilesional (less-affected) legs of 33 stroke patients with sufficiently high motor abilities (62 ± 13 yr, 16 ± 2 days postinjury) and the dominant leg of 20 controls (62 ± 10 yr) were tested in sitting position. After peak knee extension torque [maximum voluntary contraction (MVC)] was established, subjects maintained 10, 20, 30, and 50% of MVC as steady and accurate as possible for 10 s by matching voluntary force to the target level displayed on a monitor. Coefficient of variation (CV) and root-mean-square error (RMSE) were used to quantify force variability and error, respectively. The MVC was significantly smaller in the more-affected than less-affected leg, and both were significantly lower than in controls. The CV was significantly larger in the more-affected than less-affected leg at 20 and 50% MVC, whereas both were significantly larger compared with controls across all force levels. Both more-affected and less-affected legs of patients showed significantly greater RMSE than controls at 30 and 50% MVC. The CV and RMSE were not related to the Fugl-Meyer motor score or to the Rivermead Mobility Index. The CV negatively correlated with MVC in controls but only in the less-affected leg of patients. It is concluded that isometric knee extension strength and force control are bilaterally impaired soon after stroke but more so in the more-affected leg. Future studies should examine possible mechanisms and the evolution of these changes.


2018 ◽  
Vol 120 (5) ◽  
pp. 2630-2639 ◽  
Author(s):  
MinHyuk Kwon ◽  
Evangelos A. Christou

Presently, there is no evidence that magnification of visual feedback has motor implications beyond impairments in force control during a visuomotor task. We hypothesized that magnification of visual feedback would increase visual information processing, alter the muscle activation, and exacerbate the response time in older adults. To test this hypothesis, we examined whether magnification of visual feedback during a reaction time task alters the premotor time and the motor unit pool activation of older adults. Participants responded as fast as possible to a visual stimulus while they maintained a steady ankle dorsiflexion force (15% maximum) either with low-gain or high-gain visual feedback of force. We quantified the following: 1) response time and its components (premotor and motor time), 2) force variability, and 3) motor unit pool activity of the tibialis anterior muscle. Older adults exhibited longer premotor time and greater force variability than young adults. Only in older adults, magnification of visual feedback lengthened the premotor time and exacerbated force variability. The slower premotor time in older adults with high-gain visual feedback was associated with increased force variability and an altered modulation of the motor unit pool. In conclusion, our findings provide novel evidence that magnification of visual feedback also exacerbates premotor time during a reaction time task in older adults, which is correlated with force variability and an altered modulation of motor unit pool. Thus these findings suggest that visual information processing deficiencies in older adults could result in force control and reaction time impairments. NEW & NOTEWORTHY It is unknown whether magnification of visual feedback has motor implications beyond impairments in force control for older adults. We examined whether it impairs reaction time and motor unit pool activation. The findings provide novel evidence that magnification of visual feedback exacerbates reaction time by lengthening premotor time, which implicates time for information processing in older adults, which is correlated with force variability and an altered modulation of motor unit pool.


2018 ◽  
Vol 124 (3) ◽  
pp. 592-603 ◽  
Author(s):  
John W. Chow ◽  
Dobrivoje S. Stokic

We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0–3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.


2000 ◽  
Vol 84 (4) ◽  
pp. 1708-1718 ◽  
Author(s):  
Andrew B. Slifkin ◽  
David E. Vaillancourt ◽  
Karl M. Newell

The purpose of the current investigation was to examine the influence of intermittency in visual information processes on intermittency in the control continuous force production. Adult human participants were required to maintain force at, and minimize variability around, a force target over an extended duration (15 s), while the intermittency of on-line visual feedback presentation was varied across conditions. This was accomplished by varying the frequency of successive force-feedback deliveries presented on a video display. As a function of a 128-fold increase in feedback frequency (0.2 to 25.6 Hz), performance quality improved according to hyperbolic functions (e.g., force variability decayed), reaching asymptotic values near the 6.4-Hz feedback frequency level. Thus, the briefest interval over which visual information could be integrated and used to correct errors in motor output was approximately 150 ms. The observed reductions in force variability were correlated with parallel declines in spectral power at about 1 Hz in the frequency profile of force output. In contrast, power at higher frequencies in the force output spectrum were uncorrelated with increases in feedback frequency. Thus, there was a considerable lag between the generation of motor output corrections (1 Hz) and the processing of visual feedback information (6.4 Hz). To reconcile these differences in visual and motor processing times, we proposed a model where error information is accumulated by visual information processes at a maximum frequency of 6.4 per second, and the motor system generates a correction on the basis of the accumulated information at the end of each 1-s interval.


2006 ◽  
Vol 95 (2) ◽  
pp. 922-931 ◽  
Author(s):  
David E. Vaillancourt ◽  
Mary A. Mayka ◽  
Daniel M. Corcos

The cerebellum, parietal cortex, and premotor cortex are integral to visuomotor processing. The parameters of visual information that modulate their role in visuomotor control are less clear. From motor psychophysics, the relation between the frequency of visual feedback and force variability has been identified as nonlinear. Thus we hypothesized that visual feedback frequency will differentially modulate the neural activation in the cerebellum, parietal cortex, and premotor cortex related to visuomotor processing. We used functional magnetic resonance imaging at 3 Tesla to examine visually guided grip force control under frequent and infrequent visual feedback conditions. Control conditions with intermittent visual feedback alone and a control force condition without visual feedback were examined. As expected, force variability was reduced in the frequent compared with the infrequent condition. Three novel findings were identified. First, infrequent (0.4 Hz) visual feedback did not result in visuomotor activation in lateral cerebellum (lobule VI/Crus I), whereas frequent (25 Hz) intermittent visual feedback did. This is in contrast to the anterior intermediate cerebellum (lobule V/VI), which was consistently active across all force conditions compared with rest. Second, confirming previous observations, the parietal and premotor cortices were active during grip force with frequent visual feedback. The novel finding was that the parietal and premotor cortex were also active during grip force with infrequent visual feedback. Third, right inferior parietal lobule, dorsal premotor cortex, and ventral premotor cortex had greater activation in the frequent compared with the infrequent grip force condition. These findings demonstrate that the frequency of visual information reduces motor error and differentially modulates the neural activation related to visuomotor processing in the cerebellum, parietal cortex, and premotor cortex.


Sign in / Sign up

Export Citation Format

Share Document