scholarly journals Surface energy balance of the Sygyktinsky Glacier, south Eastern Siberia, during the ablation period and its sensitivity to meteorological fluctuations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduard Y. Osipov ◽  
Olga P. Osipova

AbstractThe physically based melt of the low elevation Eastern Siberian glaciers is poorly understood due to the lack of direct micrometeorological studies. We used an automatic meteorological station to record the meteorological and energy characteristics of the Sygyktinsky Glacier, south Eastern Siberia (56.8° N, 117.4° E, 2,560 m a.s.l.), during two ablation seasons and computed the surface energy balance (SEB) for 30-min intervals. The glacier ablation was both modeled and measured by stakes and a thermistor cable. The net radiation (Rnet) was the main contributor (71–75 W m−2, 89–95%) to the SEB (79 W m−2, 100%), followed by sensible (2–4 W m−2, 3–5%) and latent (2–3 W m−2, 2–4%) heat fluxes. The net shortwave radiation was the main positive component of Rnet, while the net longwave radiation was weak and either negative (− 15 W m−2 in 2019) or positive (4 W m−2 in 2020). The small proportion of turbulent fluxes in the SEB is explained by the low wind speed (1.2 m s−1). The glacier ablation was found to be more sensitive to changes in shortwave radiation and wind speed, suggesting the need to consider the atmospheric conditions of the ablation period (summer snowfalls, cloudiness, wind speed) when analyzing long-term trends in glacial changes.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2369
Author(s):  
Jing Lu ◽  
Li Jia ◽  
Chaolei Zheng ◽  
Ronglin Tang ◽  
Yazhen Jiang

The diurnal cycle of evapotranspiration (ET) is significant in studying the dynamics of land–atmosphere interactions. The diurnal ET cycle can be considered as an indicator of dry/wet surface conditions. However, the accuracy of current models in estimating the diurnal ET cycle is generally low. This study developed an improved scheme to estimate the diurnal cycle of ET by solving the surface energy balance equation combined with simplified parameterization, with daily ET as the constraint. Meteosat Second Generation (MSG) land surface temperature, and longwave and shortwave radiation products were the primary inputs. Daily ET was from the remote sensing-based ETMonitor model. The estimated instantaneous (30 min) ET from the improved scheme outperformed the official MSG instantaneous ET product when compared with in situ half-hourly measurements at 35 flux sites from the FLUXNET2015 dataset, and was also comparable with European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 ET data, with an R2 of 0.617 and root mean square error (RMSE) of 65.8 W/m2 for the improved scheme. Results were largely improved compared with those without daily ET as the constraint. The improved method was stable for the estimation of ET’s diurnal cycle at the similar atmospheric conditions and the accuracy was comparative at different land cover surfaces. Errors in the input variables and the simplification of surface heat flux parameterization affected surface energy balance closure, which can lead to instability of the solution of constants in the simplified parameterization and further to the uncertainty of ET’s diurnal cycle estimation. Measurement errors, different source areas in measured variables, and inconsistent spatial representativeness between remote sensing and site measurements also impacted the evaluation.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2016 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux tower sites and data are in great demand to provide essential terrestrial climate, water and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based earth observation and monitoring efforts, such as for example assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. Surface energy budget methods for ET estimation rely to a large extend on the basic assumption of a surface energy balance closure, assuming the full conversion of net solar radiation reaching the land surface into soil heat conduction and turbulent fluxes, i.e. the sensible (or convection) and latent heat components of the energy balance. Evapotranspiration is the conversion of the latent heat exchange fraction of the balance. In this paper, the Skukuza flux tower data were analysed in order to verify their use for validation of satellite–based evapotranspiration methods, under development in South Africa.Data series from 2000 until 2014 were used in the analysis. The energy balance ratio (EBR) concept, defined as the ratio between the sum of the turbulent convective and latent heat fluxes and radiation minus soil heat was used. At first typical diurnal patterns of EB partitioning were derived for four different seasons, well illustrating how this savannah-type biome responses to the weather conditions. Also the particular behaviour of the EB components during sunrise and sunset conditions, being important but usually neglected periods of energy transitions and inversions were noted and analysed. Annual estimates of the surface energy balance and its components were generated, including an evaluation of the balance closure. The seasonal variations were also investigated as well as the impact of nocturnal observations on the overall EB behaviour.


2021 ◽  
Author(s):  
Kine Onsum Moseid

<p>The Earth’s surface energy balance is heavily affected by incoming solar radiation and how it propagates through our atmosphere. How the sunlight propagates towards the surface depends on the atmospheric presence of aerosols, gases, and clouds. </p><p>Surface temperature evolution according to earth system models (ESMs) in the historical experiment from the coupled model intercomparison project phase 6 (CMIP6) suggests that models may be overly sensitive to aerosol forcing. Other studies have found that ESMs do not recreate observed decadal patterns in surface shortwave radiation - suggesting the models inaccurately underestimate the shortwave impact of atmospheric aerosols. These contradictory results act as a basis for our study.<br>Our study decomposes what determines both all sky and clear sky downwelling shortwave radiation at the surface in ESMs, using different experiments of CMIP6. We try to determine the respective role of aerosols, clouds and gases in the shortwave energy balance at the surface, and assess the effect of seasonality and regional differences.</p>


2019 ◽  
Vol 13 (8) ◽  
pp. 2203-2219 ◽  
Author(s):  
Tobias Linhardt ◽  
Joseph S. Levy ◽  
Christoph K. Thomas

Abstract. The hydrologic cycle in the Antarctic McMurdo Dry Valleys (MDV) is mainly controlled by surface energy balance. Water tracks are channel-shaped high-moisture zones in the active layer of permafrost soils and are important solute and water pathways in the MDV. We evaluated the hypothesis that water tracks alter the surface energy balance in this dry, cold, and ice-sheet-free environment during summer warming and may therefore be an increasingly important hydrologic feature in the MDV in the face of landscape response to climate change. The surface energy balance was measured for one water track and two off-track reference locations in Taylor Valley over 26 d of the Antarctic summer of 2012–2013. Turbulent atmospheric fluxes of sensible heat and evaporation were observed using the eddy-covariance method in combination with flux footprint modeling, which was the first application of this technique in the MDV. Soil heat fluxes were analyzed by measuring the heat storage change in the thawed layer and approximating soil heat flux at ice table depth by surface energy balance residuals. For both water track and reference locations over 50 % of net radiation was transferred to sensible heat exchange, about 30 % to melting of the seasonally thawed layer, and the remainder to evaporation. The net energy flux in the thawed layer was zero. For the water track location, evaporation was increased by a factor of 3.0 relative to the reference locations, ground heat fluxes by 1.4, and net radiation by 1.1, while sensible heat fluxes were reduced down to 0.7. Expecting a positive snow and ground ice melt response to climate change in the MDV, we entertained a realistic climate change response scenario in which a doubling of the land cover fraction of water tracks increases the evaporation from soil surfaces in lower Taylor Valley in summer by 6 % to 0.36 mm d−1. Possible climate change pathways leading to this change in landscape are discussed. Considering our results, an expansion of water track area would make new soil habitats accessible, alter soil habitat suitability, and possibly increase biological activity in the MDV. In summary, we show that the surface energy balance of water tracks distinctly differs from that of the dominant dry soils in polar deserts. With an expected increase in area covered by water tracks, our findings have implications for hydrology and soil ecosystems across terrestrial Antarctica.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 260 ◽  
Author(s):  
Xingbing Zhao ◽  
Changwei Liu ◽  
Nan Yang ◽  
Yubin Li

Land surface process observations in the western Tibet Plateau (TP) are limited because of the abominable natural conditions. During the field campaign of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX III), continuous measurements on the four radiation fluxes (downward/upward short/long-wave radiations), three heat fluxes (turbulent sensible/latent heat fluxes and soil heat flux) and also CO2 flux were collected from June 2015 through January 2017 at Shiquanhe (32.50° N, 80.08° E, 4279.3 m above sea level) in the western Tibetan Plateau. Diurnal and seasonal variation characteristics of these surface energy and CO2 fluxes were presented and analyzed in this study. Results show that (1) diurnal variations of the seven energy fluxes were found with different magnitudes, (2) seasonal variations appeared for the seven energy fluxes with their maxima in summer and minima in winter, (3) diurnal and seasonal variations of respiration caused by the biological and chemical processes within the soil were found, and absorption (release) of CO2 around 0.1 mg m−2 s−1 occurred at afternoon of summer (midnight of winter), but the absorption and release generally canceled out from a yearly perspective; and (4) the surface energy balance ratio went through both diurnal and seasonal cycles, and in summer months the slopes of the fitting curve were above 0.6, but in winter months they were around 0.5. Comparing the results of the Shiquanhe site with the central and eastern TP sites, it was found that (1) they all generally had similar seasonal and diurnal variations of the fluxes, (2) caused by the low rainfall quantity, latent heat flux at Shiquanhe (daily daytime mean always less than 90 W m−2) was distinctively smaller than at the central and eastern TP sites during the wet season (generally larger than 100 W m−2), and (3) affected by various factors, the residual energy was comparatively larger at Shiquanhe, which led to a small surface energy balance ratio.


2016 ◽  
Vol 10 (4) ◽  
pp. 1395-1413 ◽  
Author(s):  
Christian Stiegler ◽  
Magnus Lund ◽  
Torben Røjle Christensen ◽  
Mikhail Mastepanov ◽  
Anders Lindroth

Abstract. Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013–2014) on the land–atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1747 ◽  
Author(s):  
Camilo Souto ◽  
Octavio Lagos ◽  
Eduardo Holzapfel ◽  
Mahesh Lal Maskey ◽  
Lynn Wunderlich ◽  
...  

A surface energy balance model was conceived to estimate crop transpiration and soil evaporation in orchards and vineyards where the floor is partially wetted by micro-irrigation systems. The proposed surface energy balance model for partial wetting (SEB-PW) builds upon previous multiple-layer modelling approaches to estimate the latent, sensible, and soil heat fluxes, while partitioning the total evapotranspiration ( E T ) into dry and wet soil evaporation ( λ E s o i l ) and crop transpiration ( T ). The model estimates the energy balance and flux resistances for the evaporation from dry and wet soil areas below the canopy, evaporation from dry and wet soil areas between plant rows, crop transpiration, and total crop E T . This article describes the model development, sensitivity analysis and a preliminary model evaluation. The evaluation shows that simulated hourly E T values have a good correlation with field measurements conducted with the surface renewal method and micro-lysimeter measurements in a micro-irrigated winegrape vineyard of Northern California for a range of fractional crop canopy cover conditions. Evaluation showed that hourly L E estimates had root mean square error ( R M S E ) of 58.6 W m−2, mean absolute error ( M A E ) of 35.6 W m−2, Nash-Sutcliffe coefficient ( C N S ) of 0.85, and index of agreement ( d a ) of 0.94. Daily soil evaporation ( E s ) estimations had R M S E of 0.30 mm d−1, M A E of 0.24 mm d−1, C N S of 0.87, and d a of 0.94. E s estimation had a coefficient of determination ( r 2 ) of 0.95, when compared with the micro-lysimeter measurements, which showed that E s can reach values from 28% to 46% of the total E T after an irrigation event. The proposed SEB-PW model can be used to estimate the effect and significance of soil evaporation from wet and dry soil areas on the total E T , and to inform water balance studies for optimizing irrigation management. Further evaluation is needed to test the model in other partially wetted orchards and to test the model performance during all growing seasons and for different environmental conditions.


2002 ◽  
Vol 6 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Z. Su

Abstract. A Surface Energy Balance System (SEBS) is proposed for the estimation of atmospheric turbulent fluxes and evaporative fraction using satellite earth observation data, in combination with meteorological information at proper scales. SEBS consists of: a set of tools for the determination of the land surface physical parameters, such as albedo, emissivity, temperature, vegetation coverage etc., from spectral reflectance and radiance measurements; a model for the determination of the roughness length for heat transfer; and a new formulation for the determination of the evaporative fraction on the basis of energy balance at limiting cases. Four experimental data sets are used to assess the reliabilities of SEBS. Based on these case studies, SEBS has proven to be capable to estimate turbulent heat fluxes and evaporative fraction at various scales with acceptable accuracy. The uncertainties in the estimated heat fluxes are comparable to in-situ measurement uncertainties. Keywords: Surface energy balance, turbulent heat flux, evaporation, remote sensing


2011 ◽  
Vol 50 (9) ◽  
pp. 1773-1794 ◽  
Author(s):  
Young-Hee Ryu ◽  
Jong-Jin Baik ◽  
Sang-Hyun Lee

AbstractA new single-layer urban canopy model for use in mesoscale atmospheric models is developed and validated. The urban canopy model represents a built-up area as a street canyon, two facing buildings, and a road. In this model, the two facing walls are divided into sunlit and shaded walls on the basis of solar azimuth angle and canyon orientation, and individual surface temperature and energy budget are calculated for each wall. In addition, for better estimation of turbulent energy exchange within the canyon, a computational fluid dynamics model is employed to incorporate the effects of canyon aspect ratio (height-to-width ratio) and reference wind direction on canyon wind speed. The model contains the essential physical processes occurring in an urban canopy: absorption and reflection of shortwave and longwave radiation, exchanges of turbulent energy and water between surfaces (roof, two facing walls, and road) and adjacent air, and heat transfer by conduction through substrates. The developed urban canopy model is validated using datasets obtained at two urban sites: Marseille, France, and Basel, Switzerland. The model satisfactorily reproduces canyon air temperatures, surface temperatures, net radiation, sensible heat fluxes, latent heat fluxes, and storage heat fluxes for both sites. Extensive experiments are conducted to examine the sensitivities of the urban surface energy balance to meteorological factors and urban surface parameters. The reference wind speed is found to be a more crucial meteorological factor than the reference air temperature in altering urban surface energy balance, especially for weak winds. The urban surface energy balance is most sensitive to the roof albedo among urban surface parameters. The roof fraction, canyon aspect ratio, and ratio of roughness length for momentum to that for heat for the roof play important roles in altering urban surface energy balance.


Sign in / Sign up

Export Citation Format

Share Document