scholarly journals A new seven level boost-type ANPC inverter topology for photovoltaic applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jagabar Sathik M. ◽  
Dhafer J. Almakhles

AbstractDeveloping of new photovoltaic inverter topologies is received more attention in the last few years. In particular, designing an active neutral-point-clamping inverter type structure is quite popular for PV applications. The output voltage is always half of the input voltage (vin), which further increases the voltage rating of dc-link capacitors in the conventional three-level ANPC. To rectify the above problem and increase the output voltage by reducing dc-link capacitors voltage rating, a new boost type seven-level ANPC inverter topology is proposed. The proposed topology consists of seven switches and one floating capacitor. The floating capacitor voltage is self-balanced, and the output voltage is 1.5 times higher than the input voltage. A detailed comparison for some power components, power loss and cost with other existing topologies are presented. Further, the proposed topology is validated in a prototype hardware setup for different load values.

Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anbarasan P. ◽  
Krishnakumar V. ◽  
Ramkumar S. ◽  
Venkatesan S.

Purpose This paper aims to propose a new MLI topology with reduced number of switches for photovoltaic applications. Multilevel inverters (MLIs) have been found to be prospective for renewable energy applications like photovoltaic cell, as they produce output voltage from numerous separate DC sources or capacitor banks with reduced total harmonic distortion (THD) because of a staircase like waveform. However, they endure from serious setbacks including larger number of capacitors, isolated DC sources, associated gate drivers and increased control difficulty for higher number of voltage levels. Design/methodology/approach This paper proposes a new three-phase multilevel DC-link inverter topology overpowering the previously mentioned problems. The proposed topology is designed for five and seven levels in Matlab/Simulink with gating pulse using multicarrier pulse width modulation. The hardware results are shown for a five-level MLI to witness the viability of the proposed MLI for medium voltage applications. Findings The comparison of the proposed topology with other conventional and other topologies in terms of switch count, DC sources and power loss has been made in this paper. The reduction of switches in proposed topology results in reduced power loss. The simulation and hardware show that the output voltage yields a very close sinusoidal voltage and lesser THD. Originality/value The proposed topology can be extended for any level of output voltage which is helpful for sustainable source application.


Author(s):  
Mr.A.VinothKumar ◽  
Dr.S.Vijayabaskar ◽  
Ms.C.Selsiya

The demand for clean and sustainable energy has prompted research into all types of renewable energy sources, including solar energy generated by photovoltaic systems. We suggest a new multi level inverter topology in this paper. This paper looks at a PV-based 13-level multi level inverter with fewer switches. The most gainful power converters for high power applications and modern applications with fewer switches are multi level inverters. PWM methodology is used to manage the proposed topology. The proposed topology has one of the highest efficiency and lower voltage THD. The inverter produces output voltage in thirteen levels: Vdc, Vdc/2, Vdc/3, Vdc/4, Vdc/5, Vdc/6, 0, -Vdc, -Vdc/2, -Vdc/3, -Vdc/4, -Vdc/5 and -Vdc/6. The validity of the proposed inverter is verified through simulation. KEY WORDS: Pulse Width modulation (PWM), Photo Voltaic (PV) Source.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012051
Author(s):  
ZhuoQun Liu ◽  
JunChi Ma ◽  
KaiXu Liu

Abstract The T-type three-level inverter topology has the advantages of low electromagnetic interference, high efficiency, and low output harmonic content. This article combines constant power inverter, independent control of active and reactive power output, Analyzed and studied the neutral point potential balance control of the T-type three-level inverter topology. Through PI adjustment control on the amount of charge of the capacitor, the midpoint voltage of the capacitor is always maintained in a balanced state, and the fluctuation of the midpoint voltage is controlled within ±0.23%. This method can effectively avoid the influence of the difference of capacitance parameters on the DC side on the midpoint voltage. The PLECS software simulation verifies the reliability of the capacitor voltage equalization circuit under the condition of the voltage imbalance at the midpoint of the DC side voltage source supply capacitor voltage equalization.


2018 ◽  
Vol 28 (01) ◽  
pp. 1950014
Author(s):  
Ghasem Haghshenas ◽  
Sayyed Mohammad Mehdi Mirtalaei ◽  
Hamed Mordmand ◽  
Ghazanfar Shahgholian

In this paper, a novel high step-up single switch DC–DC converter with soft switching is presented. The main application of this converter is the connection of photovoltaic (PV) system to a 400[Formula: see text]V DC-bus. The proposed converter achieves high step-up voltage gain with small duty cycle by a combined boost and fly-back topology. Also, its switch voltage stress is lower than the output voltage. Besides, in the proposed converter, any auxiliary switch or magnetic core has not been used — therefore, the number of converter components has not been increased much in comparison with the conventional boost-fly-back converter. The operation principles of the converter and its theoretical operation waveforms are presented. In order to evaluate the theoretical analysis, a prototype of the converter is designed and experimentally implemented. The practical results are presented for a 100[Formula: see text]W boost-fly-back converter with input voltage of 40[Formula: see text]V and output voltage of 400[Formula: see text]V. Also, the output capacitor is designed to have less than 1% ripple on output voltage.


Author(s):  
Marcelo Gradella Villalva ◽  
Ernesto Ruppert Filho

The control of the input voltage of DC-DC converters is frequently required in photovoltaic applications. In this special situation, unlike conventional converters, the output voltage is constant and the input voltage is controlled. This paper deals with the analysis and the control of the buck converter with constant output voltage and variable input.


2013 ◽  
Vol 2 (1) ◽  
pp. 14-19
Author(s):  
Carlos Roncero-Clemente ◽  
Enrique Romero-Cadaval ◽  
Oleksandr Husev ◽  
Dmitri Vinnikov ◽  
Serhii Stepenko

AbstractThis paper is focused on a single-phase three-level neutral-point-clamped quasi-z-source inverter when it is operating being connected to the electrical grid. A control strategy for injecting current synchronized in phase with the voltage at the point of common coupling has been proposed and studied. It is achieved by means of controlling the output voltage between branches adjusting the output current by using a d-q frame and the analysis of the output filter. The control strategy generates the reference to be used in the modulation technique and it has been validated with and without shoot-through switching states. A method to calculate the minimum value of the shoot-through duty cycle is also explained in order to assure the proper control of the injected current when the input voltage is less than peak value of the grid voltage. It is an important feature because 3L-NPC qZSI due to its possibility of boosting input voltage in a single stage would operate better than a traditional inverter, for instance in photovoltaic applications when the value of irradiance is decreased. The presented results have been obtained using PSCAD/EMTDC as a simulation tool.


This paper proposes a single phase modified seven level U-Cell inverter configurations in which the advanced process controller has been implemented. By using the boost operation the output of the inverter will produce higher output voltage when compared to the maximum DC source value used. To obtain maximum power the designed inverter is implemented with the photovoltaic system where the power is produced from two different PV panels which is connected to DC link by using DC-DC converters. The semiconductor switches and DC links are used to generate the inverter AC output voltages with seven levels. Two PV panels with different voltages are used in which two panels voltages are combined and their powers are injected to the grid. To validate the dynamic performance of the proposed U-Cell inverter the advanced process controller is used in the inverter connected to the grid. The controller is designed and processed to maintain the capacitor voltage to obtain the desired AC output with desired magnitude. The dynamic performance during changes in the supply current and DC voltage of capacitor for the process controller has been obtained.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2693
Author(s):  
Faqiang Wang ◽  
Herbert Iu ◽  
Jing Li

A new step-up converter with an ultrahigh voltage conversion ratio is proposed in this paper. Two power switches of such a converter, which conduct synchronically, and its output voltage, which has common ground and common polarity with its input voltage, lead to the simple control circuit. No abrupt changes in the capacitor voltage and the inductor current of the proposed step-up converter mean that it does not suffer from infinite capacitor current and inductor voltage. Two input inductors with different values can still allow the proposed step-up converter to work appropriately. An averaged model of the proposed step-up converter was built and one could see that it was still fourth-order even with its five storage elements. Some theoretical derivations, theoretical analysis, Saber simulations, and circuit experiments are provided to validate the effectiveness of the proposed step-up converter.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2262
Author(s):  
Md Reyaz Hussan ◽  
Adil Sarwar ◽  
Irfan Khan ◽  
Mohd Tariq ◽  
Mohammad Tayyab ◽  
...  

An 11-level switched-capacitor multilevel inverter (SCMLI) with 2.5 times boosting feature is presented in this paper. It can produce an 11-level output voltage waveform by utilizing 14 switches, 3 capacitors, 2 diodes, and 1 DC source. Only nine driver circuits are needed as the topology has three pairs of complementary switches and two bidirectional switches. It has inherent capacitor self-balancing property as the capacitors are connected across the DC voltage source during several states within a fundamental cycle to charge the capacitors to the input voltage. A detailed comparison shows the effectiveness of the proposed topology in terms of the number of switches, number of capacitors, number of sources, total standing voltage (TSV), efficiency, and boosting ability with the state-of-art recently proposed circuits. Subsequently, the performance of the proposed SCMLI is validated experimentally utilizing the nearest level control (NLC), a fundamental frequency-based switching technique.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1810 ◽  
Author(s):  
Muhyaddin Rawa ◽  
Marif Daula Siddique ◽  
Saad Mekhilef ◽  
Noraisyah Mohamed Shah ◽  
Hussain Bassi ◽  
...  

Multilevel inverters are proficient in achieving a high-quality staircase output voltage waveform with a lower amount of harmonic content. In this paper, a new hybrid multilevel inverter topology based on the T-type and H-bridge module is presented. The proposed topology aims to achieve a higher number of levels utilizing a lower number of switches, direct current (dc) voltage sources, and voltage stresses across different switches. The basic unit of the proposed single T-type and double H-bridge multilevel inverter (STDH-MLI) produces 15 levels at the output using three dc voltage sources. The proposed topology can be extended by connecting a larger number of dc voltage sources in the T-type section. The nearest level control (NLC) switching technique is used to generate gate pulses for switches to achieve a high-quality output voltage waveform. In addition, a simplified way to achieve NLC is also described in the paper. A detailed comparison with other similar topologies is provided to set the benchmark of the proposed topology. Finally, experimental work is carried out to validate the performance of the proposed topology.


Sign in / Sign up

Export Citation Format

Share Document