scholarly journals Variation in fine root traits with thinning intensity in a Chinese fir plantation insights from branching order and functional groups

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zuhua Wang ◽  
Min Liu ◽  
Fen Chen ◽  
Haibo Li

AbstractThinning is a widely used practice in forest management, but the acclimation mechanisms of fine roots to forest thinning are still unclear. We examined the variations in fine root traits of different branching orders and functional groups along a thinning intensity gradient in a 26-year-old Chinese fir (Cunninghamia lanceolata) plantation. With increasing thinning intensity, the root C concentration (RCC), root N concentration (RNC), specific root area (SRA), and specific root length (SRL) of the absorptive roots (the first two orders) significantly decreased, while root abundance (root biomass and root length density) and root tissue density (RTD) significantly increased. Fifty-four percent of the variation in the absorptive root traits could be explained by the soil N concentration and the biomass and diversity of the understorey vegetation. Conversely, transport root (third- and higher-order) traits did not vary significantly among different thinning intensities. The covariation of absorptive root traits across thinning intensities regarding two dimensions was as follows: the first dimension (46% of the total variation) represented changes in root abundance and chemical traits (related to RCC, RNC), belonging to an extensive foraging strategy; the second dimension (41% of the total variation) represented variations in root morphological traits (related to RTD, SRL and SRA), which is an intensive foraging strategy (i.e., root economic spectrum). These results suggested that the absorptive roots of Chinese fir adopt two-dimensional strategies to acclimate to the altered surroundings after thinning.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 793
Author(s):  
Yaxiong Zheng ◽  
Fengying Guan ◽  
Shaohui Fan ◽  
Yang Zhou ◽  
Xiong Jing

Functional characteristics reflect plant strategies and adaptability to the changing environment. Determining the dynamics of these characteristics after harvesting would improve the understanding of forest response strategies. Strip clearcutting (SC) of moso bamboo forests, which significantly reduces the cutting cost, has been proposed to replace manual selective harvesting. A comparison of restoration features shows that 8 m is the optimal cutting width. However, the precise response of functional features to the resulting harvest-created gap remains unclear. In this study, three SC plots were selected which was performed in February 2019, with three unharvested plots as a control (C). The study focused on 10 functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), nitrogen/phosphorus ratio (N:P), wood density (WD), fine root biomass (FRB), specific fine root length (SRL), and root length density (RLD). A one-way ANOVA was used to compare differences in functional traits and soil nutrients between treatments. Strip clearcutting significantly reduced the soil organic carbon (SOC) and total nitrogen (TN) contents (p < 0.05). In terms of functional characteristics, SC significantly decreased LA and increased LNC, LPC, and N:P (p < 0.05). However, SC had no significant effect on fine root traits (p > 0.05). This study highlighted that root trait, soil content of total phosphorus (TP) and total potassium (TK) returned to the level of uncut plots after a year’s recovery. The LPC, LNC, and N:P were negatively correlated with LA, and LDMC and WD were negatively correlated with SLA, while the effect of SC on fine root traits was limited (p > 0.05). Fine root traits (FRB, RLD, and SRL) were positively associated with SOC, TN, and TP, but negatively correlated with TK. The changes in soil nutrient content caused by the removal of biomass were normal. Increased light and the rapid growth of new trees will increase nutrient regressions; therefore, these results further confirm the feasibility of SC.


2020 ◽  
Author(s):  
Dan-Dan Li ◽  
Hong-Wei Nan ◽  
Chun-Zhang Zhao ◽  
Chun-Ying Yin ◽  
Qing Liu

Abstract Aims Competition, temperature, and nutrient are the most important determinants of tree growth in the cold climate on the eastern Tibetan Plateau. Although many studies have reported their individual effects on tree growth, little is known about how the interactions of competition with fertilization and temperature affect root growth. We aim to test whether climate warming and fertilization promote competition and to explore the functional strategies of Picea asperata in response to the interactions of these factors. Methods We conducted a paired experiment including competition and non-competition treatments under elevated temperature (ET) and fertilization. We measured root traits, including the root tip number over the root surface (RTRS), the root branching events over the root surface (RBRS), the specific root length (SRL), the specific root area (SRA), the total fine root length and area (RL and RA), the root tips (RT) and root branching events (RB). These root traits are considered to be indicators of plant resource uptake capacity and root growth. The root biomass and the nutrient concentrations in the roots were also determined. Important Findings The results indicated that ET, fertilization and competition individually enhanced the nitrogen (N) and potassium (K) concentrations in fine roots, but they did not affect fine root biomass or root traits, including RL, RT, RA and RB. However, both temperature and fertilization, as well as their interaction, interacting with competition increased RL, RA, RT, RB, and nutrient uptake. In addition, the SRL, SRA, RTRS and RBRS decreased under fertilization, the interaction between temperature and competition decreased SRL and SRA, while the other parameters were not affected by temperature or competition. These results indicate that Picea asperata maintains a conservative nutrient strategy in response to competition, climate warming, fertilization, and their interactions. Our results improve our understanding of the physiological and ecological adaptability of trees to global change.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7006 ◽  
Author(s):  
Jiayu Li ◽  
Shunxian Lin ◽  
Qingxu Zhang ◽  
Qi Zhang ◽  
Wenwen Hu ◽  
...  

Background Allelopathic rice releases allelochemicals through its root systems, thereby exerting a negative effect on paddy weeds. This research aimed to evaluate the relationship between fine-root traits and the rice allelopathic potential at the seedling stage. Methods Two allelopathic rice cultivars, ‘PI312777’ and ‘Taichung Native1,’ and one non-allelopathic rice cultivar, ‘Lemont,’ were grown to the 3–6 leaf stage in a hydroponic system. Their fine roots were collected for morphological trait (root length, root surface area, root volume, and root tips number) in smaller diameter cutoffs and proliferative trait (root biomass) analysis. Their root-exudates were used for quantitative analysis of phenolic acids contents and an evaluation of allelopathic potential. Correlation analysis was also used to assess whether any linear relationships existed. Results Our results showed that allelopathic rice cultivars had significantly higher fine-root length having diameters <0.2 mm, more root tips number, and greater root biomass, coupled with higher allelopathic potential and phenolic acid contents of their root exudates, comparing with non-allelopathic rice cultivar. These fine-root traits were significantly-positively correlated to allelopathic inhibition and total phenolic contents in rice root-exudates. However, there were not significant correlations among the rice allelopathic potential and total phenolic acid contents of rice root-exudates with the root length, root surface area, and root volume of fine root in diameter >0.2 mm. Discussion Our results implied that fine-root traits appears to be important in understanding rice allelopathy at the seedling stage. The high allelopathic potential of rice cultivars might be attributed to their higher length of fine roots <0.2 mm in diameter and more number of root tips of fine root, which could accumulate and release more allelochemicals to solutions, thereby resulting in high inhibition on target plants. The mechanisms regulating this process need to be further studied.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kira A. Borden ◽  
Tolulope G. Mafa-Attoye ◽  
Kari E. Dunfield ◽  
Naresh V. Thevathasan ◽  
Andrew M. Gordon ◽  
...  

Predicting respiration from roots and soil microbes is important in agricultural landscapes where net flux of carbon from the soil to the atmosphere is of large concern. Yet, in riparian agroecosystems that buffer aquatic environments from agricultural fields, little is known on the differential contribution of CO2 sources nor the systematic patterns in root and microbial communities that relate to these emissions. We deployed a field-based root exclusion experiment to measure heterotrophic and autotrophic-rhizospheric respiration across riparian buffer types in an agricultural landscape in southern Ontario, Canada. We paired bi-weekly measurements of in-field CO2 flux with analysis of soil properties and fine root functional traits. We quantified soil microbial community structure using qPCR to estimate bacterial and fungal abundance and characterized microbial diversity using high-throughput sequencing. Mean daytime total soil respiration rates in the growing season were 186.1 ± 26.7, 188.7 ± 23.0, 278.6 ± 30.0, and 503.4 ± 31.3 mg CO2-C m–2 h–1 in remnant coniferous and mixed forest, and rehabilitated forest and grass buffers, respectively. Contributions of autotrophic-rhizospheric respiration to total soil CO2 fluxes ranged widely between 14 and 63% across the buffers. Covariation in root traits aligned roots of higher specific root length and nitrogen content with higher specific root respiration rates, while microbial abundance in rhizosphere soil coorindated with roots that were thicker in diameter and higher in carbon to nitrogen ratio. Variation in autotrophic-rhizospheric respiration on a soil area basis was explained by soil temperature, fine root length density, and covariation in root traits. Heterotrophic respiration was strongly explained by soil moisture, temperature, and soil carbon, while multiple factor analysis revealed a positive correlation with soil microbial diversity. This is a first in-field study to quantify root and soil respiration in relation to trade-offs in root trait expression and to determine interactions between root traits and soil microbial community structure to predict soil respiration.


2014 ◽  
Vol 12 (S1) ◽  
pp. S79-S82 ◽  
Author(s):  
Kuldeep Tyagi ◽  
Hyo Jeong Lee ◽  
Chong Ae Lee ◽  
Brian J. Steffenson ◽  
Young Jin Kim ◽  
...  

Improved root architecture of cultivated barley can improve crop performance in drought-prone areas. In this study, seedlings of 315 wild barley (Hordeum vulgare subsp. spontaneum) accessions from the Wild Barley Diversity Collection (WBDC) were grown under hydroponic conditions for 8 d after germination and then root characteristics were analysed. Significant differences were observed among the accessions with regard to seminal root number (SRN), root length (RL), specific root length (SRL), root fresh weight and root dry weight (RDW). Principal component analysis explained about 81% of the total variation for ten traits. Principal component (PC) 1, PC2 and PC3 explained about 38, 30 and 13% of the total variation among the accessions. The two most prominent contributors in each PC were RL and SRL, RDW and SRN, and the longitude and latitude of the collection sites, respectively. Accessions WBDC266, WBDC302, WBDC286 and WBDC011 had the longest RL and the highest RDW, specific dry root weight and SRL, respectively. These accessions may be useful genetic resources for the improvement of these root traits in cultivated barley.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 174
Author(s):  
Hui Liu ◽  
Fabio Fiorani ◽  
Ortrud Jäck ◽  
Tino Colombi ◽  
Kerstin A. Nagel ◽  
...  

Plants with improved nutrient use efficiency are needed to maintain and enhance future crop plant production. The aim of this study was to explore candidate traits for pre-breeding to improve nutrient accumulation and early vigor of spring wheat grown at high latitudes. We quantified shoot and root traits together with nutrient accumulation in nine contrasting spring wheat genotypes grown in rhizoboxes for 20 days in a greenhouse. Whole-plant relative growth rate was here correlated with leaf area productivity and plant nitrogen productivity, but not leaf area ratio. Furthermore, the total leaf area was correlated with the accumulation of six macronutrients, and could be suggested as a candidate trait for the pre-breeding towards improved nutrient accumulation and early vigor in wheat to be grown in high-latitude environments. Depending on the nutrient of interest, different root system traits were identified as relevant for their accumulation. Accumulation of nitrogen, potassium, sulfur and calcium was correlated with lateral root length, whilst accumulation of phosphorus and magnesium was correlated with main root length. Therefore, special attention needs to be paid to specific root system traits in the breeding of wheat towards improved nutrient accumulation to counteract the suboptimal uptake of some nutrient elements.


Trees ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 415-429 ◽  
Author(s):  
Kouhei Miyatani ◽  
Yuki Mizusawa ◽  
Kazuki Okada ◽  
Toko Tanikawa ◽  
Naoki Makita ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 241 ◽  
Author(s):  
Allah Wasaya ◽  
Xiying Zhang ◽  
Qin Fang ◽  
Zongzheng Yan

Plant roots play a significant role in plant growth by exploiting soil resources via the uptake of water and nutrients. Root traits such as fine root diameter, specific root length, specific root area, root angle, and root length density are considered useful traits for improving plant productivity under drought conditions. Therefore, understanding interactions between roots and their surrounding soil environment is important, which can be improved through root phenotyping. With the advancement in technologies, many tools have been developed for root phenotyping. Canopy temperature depression (CTD) has been considered a good technique for field phenotyping of crops under drought and is used to estimate crop yield as well as root traits in relation to drought tolerance. Both laboratory and field-based methods for phenotyping root traits have been developed including soil sampling, mini-rhizotron, rhizotrons, thermography and non-soil techniques. Recently, a non-invasive approach of X-ray computed tomography (CT) has provided a break-through to study the root architecture in three dimensions (3-D). This review summarizes methods for root phenotyping. On the basis of this review, it can be concluded that root traits are useful characters to be included in future breeding programs and for selecting better cultivars to increase crop yield under water-limited environments.


Sign in / Sign up

Export Citation Format

Share Document