scholarly journals Dynamical efficiency for multimodal time-varying transportation networks

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo Bellocchi ◽  
Vito Latora ◽  
Nikolas Geroliminis

AbstractSpatial systems that experience congestion can be modeled as weighted networks whose weights dynamically change over time with the redistribution of flows. This is particularly true for urban transportation networks. The aim of this work is to find appropriate network measures that are able to detect critical zones for traffic congestion and bottlenecks in a transportation system. We propose for both single and multi-layered networks a path-based measure, called dynamical efficiency, which computes the travel time differences under congested and free-flow conditions. The dynamical efficiency quantifies the reachability of a location embedded in the whole urban traffic condition, in lieu of a myopic description based on the average speed of single road segments. In this way, we are able to detect the formation of congestion seeds and visualize their evolution in time as well-defined clusters. Moreover, the extension to multilayer networks allows us to introduce a novel measure of centrality, which estimates the expected usage of inter-modal junctions between two different transportation means. Finally, we define the so-called dilemma factor in terms of number of alternatives that an interconnected transportation system offers to the travelers in exchange for a small increase in travel time. We find macroscopic relations between the percentage of extra-time, number of alternatives and level of congestion, useful to quantify the richness of trip choices that a city offers. As an illustrative example, we show how our methods work to study the real network of a megacity with probe traffic data.

Author(s):  
Haoxiang Wang

In recent times Automation is emerging every day and bloomed in every sector. Intelligent Transportation System (ITS) is one of the important branches of Automation. The major constrain in the transportation system is traffic congestion. This slurps the individual’s time and consequently pollutes the environment. A centralized management is required for optimizing the transportation system. The current traffic condition is predicted by evaluating the historical data and thereby it reduces the traffic congestion. The periodic update of traffic condition in each and every street of the city is obtained and the data is transferred to the autonomous vehicle. These data are obtained from the simulation results of transportation prediction tool SUMO. It is proved that our proposed work reduces the traffic congestion and maintains ease traffic flow and preserves the fleet management.


2021 ◽  
pp. 1-14
Author(s):  
Wanxin Hu ◽  
Fen Cheng

With the development of society and the Internet and the advent of the cloud era, people began to pay attention to big data. The background of big data brings opportunities and challenges to the research of urban intelligent transportation networks. Urban transportation system is one of the important foundations for maintaining urban operation. The rapid development of the city has brought tremendous pressure on the traffic, and the congestion of urban traffic has restricted the healthy development of the city. Therefore, how to improve the urban transportation network model and improve transportation and transportation has become an urgent problem to be solved in urban development. Specific patterns hidden in large-scale crowd movements can be studied through transportation networks such as subway networks to explore urban subway transportation modes to support corresponding decisions in urban planning, transportation planning, public health, social networks, and so on. Research on urban subway traffic patterns is crucial. At the same time, a correct understanding of the behavior patterns and laws of residents’ travel is a key factor in solving urban traffic problems. Therefore, this paper takes the metro operation big data as the background, takes the passenger travel behavior in the urban subway transportation system as the research object, uses the behavior entropy to measure the human behavior, and actively explores the urban subway traffic mode based on the metro passenger behavior entropy in the context of big data. At the same time, the congestion degree of the subway station is analyzed, and the redundancy time optimization model of the subway train stop is established to improve the efficiency of the subway operation, so as to provide important and objective data and theoretical support for the traveler, planner and decision maker. Compared to the operation graph without redundant time, the total travel time optimization effect of passengers is 7.74%, and the waiting time optimization effect of passengers is 6.583%.


2018 ◽  
Vol 47 (4) ◽  
pp. 302-308 ◽  
Author(s):  
Krishna Saw ◽  
Aathira K. Das ◽  
Bhimaji K. Katti ◽  
Gaurang J. Joshi

Achievement of fast and reliable travel time on urban road network is one of the major objectives for a transport planner against the enormous growth in vehicle population and urban traffic in most of the metropolitan cities in India. Urban arterials or main city corridors are subjected to heavy traffic flow resulting in degradation of traffic quality in terms of vehicular delays and increase in travel time. Since the Indian roadway traffic is characterized by heterogeneity with dominance of 2Ws (Two wheelers) and 3Ws (Auto rickshaw), travel times are varying significantly. With this in background, the present paper focuses on identification of travel time attributes such as heterogeneous traffic, road side friction and corridor intersections for recurrent traffic condition and to develop an appropriate Corridor Travel Time Estimation Model using Multi-Linear Regression (MLR) approach. The model is further subjected to sensitivity analysis with reference to identified attributes to realize the impact of the identified attributes on travel time so as to suggest certain measures for improvement.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Hongxiao Wang ◽  
Qiang Li ◽  
Sang-Bing Tsai

With the rapid economic development and urbanization process accelerating, motor vehicle ownership in large cities is increasing year by year; urban traffic congestion, parking difficulties, and other problems are becoming increasingly serious; in ordinary daily life, continuous risk of disturbance, having a flexible transportation system network is more able to alleviate daily congestion in the city, and the main thing about flexible transportation network is its algorithm. It is worth noting that congestion in many cities is generally reflected in the main roads, while many secondary roads and branch roads are underutilized, and the limited road resources in cities are not fully utilized. As an economic and effective road traffic management measure, one-way traffic can balance the spatial and temporal distribution of traffic pressure within the road network, make full use of the existing urban road network capacity, and solve the traffic congestion problem. Therefore, it is of great theoretical and practical significance to develop a reasonable and scientific one-way traffic scheme according to the characteristics of traffic operation in different regions. Based on the fixed demand model, the influence of traffic demand changes is further considered, the lower-level model is designed as an elastic demand traffic distribution model, the excess demand method is used to transform the elastic demand problem into an equivalent fixed demand problem based on the extended network, and the artificial bee colony algorithm based on risk perturbation is designed to solve the two-level planning model. The case study gives a one-way traffic organization optimization scheme that integrates three factors, namely, the average load degree overload limit of arterial roads, the detour coefficient, and the number of on-street parking spaces on feeder roads, and performs sensitivity analysis on the demand scaling factor.


2010 ◽  
Vol 108-111 ◽  
pp. 1170-1175 ◽  
Author(s):  
Xue Dong Du ◽  
Jiang Tao Ji ◽  
Da Peng Yan

The research of using wireless sensor network to settle the problem of urban traffic has become a hotspot in the fields of intelligent transportation system. In this paper, a wireless sensor network model based on mobile agents is proposed. Since mobile agents have characteristics of autonomous collaboration and asynchronous interaction, this model owns the abilities of adapting to the dynamic network changes, reducing the network load and enhancing the data fusion. In the application of the model, the travelers can be guided to choose the right road line through calculation of the predicated value of traffic congestion, so the condition of the traffic congestion can be remitted in some way.


Author(s):  
Whoibin Chung ◽  
Mohamed Abdel-Aty ◽  
Ho-Chul Park ◽  
Qing Cai ◽  
Mdhasibur Rahman ◽  
...  

A new decision support system (DSS) using travel time reliability was developed for integrated active traffic management (IATM) including freeways and arterials. The DSS consists of recommendation and evaluation of response plans. The DSS also includes three representative traffic management strategies: variable speed limits, queue warning, and ramp metering. The recommendation of response plans for recurring traffic congestion was generated from the logics of the three strategies. The evaluation of response plans was conducted by travel time reliability through the prediction of traffic conditions with response plans. The near-future prediction of traffic conditions with control strategies was conducted through METANET for freeways and arterials. The developed DSS was evaluated under three types of traffic congestion: extreme, heavy, and moderate. According to the evaluation results, the developed DSS recommended an IATM strategy with the highest synergistic relationships in real time and contributed to enhancing the effectiveness of the IATM strategies. It was confirmed that arterials should have the allowable residual capacity for the improvement of traffic flow of the entire corridor network. Furthermore, the DSS demonstrated a more balanced traffic condition between freeways and arterials.


2014 ◽  
Vol 962-965 ◽  
pp. 2468-2472
Author(s):  
Guo Wen Feng

urban traffic congestion will not only cause traffic problems, but also lead to environmental problems. Important method to ease urban congestion is to establish advanced public transportation system in cities. Currently, partaking rate of public transportation is insufficient in China, thus making it impossible for public transportation to play expected role. In order to solve the problem of partaking rate of public transportation in cities, efforts should be made to give full play to the government’s role, improve internal operation efficiency and guide urban residents to select public transportation for trips actively.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Cui ◽  
Yueer Gao ◽  
Jing Cheng ◽  
Lei Shi

To fully achieve effective rail transit, prevent the waste of conventional bus capacity along a rail transit line, and relieve the urban traffic congestion problem, it is necessary to screen for the adjustment of conventional bus lines prior to the operation of rail transit to provide a basis for further optimization of bus lines. Based on the analysis of spatial relationships between a rail transit line and conventional collinear bus lines and considering the time advantage characteristics of rail transit in rush hours, a model of the generalized travel time costs and travel time savings proportion in the collinear section of rail transit and bus was proposed. To evaluate the utility of rail transit relative to conventional bus collinear lines, the conventional bus lines to be adjusted were determined. Taking Xiamen as an example, the bus lines of Hubin East Road Station as the endpoint of metro line 1 were employed to calculate the model using GPS data of the buses, and the bus lines to be adjusted in the Hubin East Road were determined. The results show that the model is effective in the elastic selection of conventional bus lines that need to be adjusted and provides decision-making support for urban comprehensive public transport planning.


2015 ◽  
Vol 29 (15) ◽  
pp. 1550074 ◽  
Author(s):  
Zhao Tian ◽  
Li-Min Jia ◽  
Hong-Hui Dong ◽  
Zun-Dong Zhang ◽  
Yang-Dong Ye

Traffic congestion is now nearly ubiquitous in many urban areas and frequently occurs during rush hour periods. Rush hour avoidance is an effective way to ease traffic congestion. It is significant to calculate the rush hour for alleviating traffic congestion. This paper provides a method to calculate the fuzzy peak hour of the urban traffic network considering the flow, speed and occupancy. The process of calculation is based on betweenness centrality of network theory, optimal separation method, time period weighting, probability–possibility transformations and trapezoidal approximations of fuzzy numbers. The fuzzy peak hour of the urban road traffic network (URTN) is a trapezoidal fuzzy number [m1, m2, m3, m4]. It helps us (i) to confirm a more detailed traffic condition at each moment, (ii) to distinguish the five traffic states of the traffic network in one day, (iii) to analyze the characteristic of appearance and disappearance processes of the each traffic state and (iv) to find out the time pattern of residents travel in one city.


Sign in / Sign up

Export Citation Format

Share Document