scholarly journals Nanoscale cutting using self-excited microcantilever

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Yang ◽  
Ichiro Ogura ◽  
ZhenYan Jiang ◽  
LinJun An ◽  
Kiwamu Ashida ◽  
...  

AbstractThe application of self-excitation is proposed to improve the efficiency of the nanoscale cutting procedure based on use of a microcantilever in atomic force microscopy. The microcantilever shape is redesigned so that it can be used to produce vibration amplitudes with sufficient magnitudes to enable the excitation force applied by an actuator to be transferred efficiently to the tip of the microcantilever for the cutting process. A diamond abrasive that is set on the tip is also fabricated using a focused ion beam technique to improve the cutting effect. The natural frequency of the microcantilever is modulated based on the pressing load. Under conventional external excitation conditions, to maintain the microcantilever in its resonant state, it is necessary to vary the excitation frequency in accordance with the modulation. In this study, rather than using external excitation, the self-excitation cutting method is proposed to overcome this difficulty. The self-excited oscillation is produced by appropriate setting of the phase difference between the deflection signal of the microcantilever and the feedback signal for the actuator. In addition, it is demonstrated experimentally that the change in the phase difference enables us to control the amplitude of the self-excitation. As a result, control of the cutting depth is achieved via changes in the phase difference.

2021 ◽  
Author(s):  
RUI YANG ◽  
Ichiro Ogura ◽  
ZhenYan Jiang ◽  
LinJun An ◽  
Kiwamu Ashida ◽  
...  

Abstract The application of self-excitation is proposed to improve the efficiency of the nanoscale cutting procedure based on use of a microcantilever in atomic force microscopy. The microcantilever shape is redesigned so that it can be used to produce vibration amplitudes with sufficient magnitudes to enable the excitation force applied by an actuator to be transferred efficiently to the tip of the microcantilever for the cutting process. A diamond abrasive that is set on the tip is also fabricated using a focused ion beam technique to improve the cutting effect. The natural frequency of the microcantilever is modulated based on the pressing load. Under conventional external excitation conditions, to maintain the microcantilever in its resonant state, it is necessary to vary the excitation frequency in accordance with the modulation. In this study, rather than using external excitation, the self-excitation cutting method is proposed to overcome this difficulty. The self-excited oscillation is produced by appropriate setting of the phase difference between the deflection signal of the microcantilever and the feedback signal for the actuator. In addition, it is demonstrated experimentally that the change in the phase difference enables us to control the amplitude of the self-excitation. As a result, control of the groove cutting depth is achieved via changes in the phase difference.


2012 ◽  
Vol 1421 ◽  
Author(s):  
Russell J. Bailey ◽  
Remco Geurts ◽  
Debbie J. Stokes ◽  
Frank de Jong ◽  
Asa H. Barber

ABSTRACTThe mechanical behavior of nanocomposites is critically dependent on their structural composition. In this paper we use Focused Ion Beam (FIB) microscopy to prepare surfaces from a layered polymer nanocomposite for investigation using phase contrast atomic force microscopy (AFM). Phase contrast AFM provides mechanical information on the surface examined and, by combining with the sequential cross-sectioning of FIB, can extend the phase contract AFM into three dimensions.


2002 ◽  
Vol 81 (5) ◽  
pp. 865-867 ◽  
Author(s):  
G. N. Phillips ◽  
M. Siekman ◽  
L. Abelmann ◽  
J. C. Lodder

2009 ◽  
Vol 1228 ◽  
Author(s):  
Hao Wang ◽  
Greg C. Hartman ◽  
Joshua Williams ◽  
Jennifer L. Gray

AbstractThere are many factors that have the potential to limit significant advances in device technology. These include the ability to arrange materials at shrinking dimensions and the ability to successfully integrate new materials with better properties or new functionalities. To overcome these limitations, the development of advanced processing methods that can organize various combinations of materials at nano-scale dimensions with the necessary quality and reliability is required. We have explored using a gallium focused ion beam (FIB) as a method of integrating highly mismatched materials with silicon by creating template patterns directly on Si with nanoscale resolution. These templates are potentially useful as a means of locally controlling topography at nanoscale dimensions or as a means of locally implanting Ga at specific surface sites. We have annealed these templates in vacuum to study the effects of ion dosage on local Ga concentration and topography. We have also investigated the feasibility of creating Ga nanodots using this method that could eventually be converted to GaN through a nitridation process. Atomic force microscopy and electron microscopy characterization of the resulting structures are shown for a variety of patterning and processing conditions.


1999 ◽  
Vol 562 ◽  
Author(s):  
Stephan Grunow ◽  
Deda Diatezua ◽  
Soon-Cheon Seo ◽  
Timothy Stoner ◽  
Alain E. KaloyerosI

ABSTRACTAs computer chip technologies evolve from aluminum-based metallization schemes to their copper-based counterparts, Electrochemical Deposition (ECD) is emerging as a viable deposition technique for copper (Cu) interconnects. This paper presents the results of a first-pass study to examine the underlying mechanisms that control ECD Cu nucleation, growth kinetics, and post-deposition microstructure evolution (self-annealing), leading to the development and optimization of an ECD Cu process recipe for sub-quarter-micron device generations. The influence of bath composition, current waveform, type and texture of Cu seed layer, and device feature size (scaling effect) on the evolution of film texture, morphology, electrical properties, and fill characteristics was investigated using a manufacturing-worthy ReynoldsTech 8″ wafer plating tool. Resulting films were analyzed by X-ray Diffraction (XRD), four-point resistivity probe, Focused-Ion-Beam Scanning Electron Microscopy (FIB-SEM), and Atomic Force Microscopy (AFM). These investigations identified an optimized process window for the complete fill of aggressive device structures with pure Cu with resistivity ∼ 2.0 μΩ-cm and smooth surface morphology.


2014 ◽  
Vol 891-892 ◽  
pp. 524-529 ◽  
Author(s):  
Jiří Man ◽  
Miroslav Valtr ◽  
Ivo Kuběna ◽  
Martin Petrenec ◽  
Karel Obrtlík ◽  
...  

Atomic force microscopy (AFM) and focused ion beam technique (FIB) were adopted to study the early stages of surface relief evolution in 316L steel and polycrystalline copper fatigued with constant plastic strain amplitudes at different temperatures (316L steel at 93, 173 and 573 K; copper at 83, 173 and 295 K). Qualitative and quantitative data on the morphology and shape of persistent slip markings (PSMs), occurrence of extrusions and intrusions and the kinetics of extrusion growth are reported. They are discussed in relation with recent physically based theories of surface relief formation leading to fatigue crack initiation.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1493 ◽  
Author(s):  
Tan Sui ◽  
Jiří Dluhoš ◽  
Tao Li ◽  
Kaiyang Zeng ◽  
Adrian Cernescu ◽  
...  

Peritubular dentine (PTD) and intertubular dentine (ITD) were investigated by 3D correlative Focused Ion Beam (FIB)-Scanning Electron Microscopy (SEM)-Energy Dispersive Spectroscopy (EDS) tomography, tapping mode Atomic Force Microscopy (AFM) and scattering-type Scanning Near-Field Optical Microscopy (s-SNOM) mapping. The brighter appearance of PTD in 3D SEM-Backscattered-Electron (BSE) imaging mode and the corresponding higher grey value indicate a greater mineral concentration in PTD (~160) compared to ITD (~152). However, the 3D FIB-SEM-EDS reconstruction and high resolution, quantitative 2D map of the Ca/P ratio (~1.8) fail to distinguish between PTD and ITD. This has been further confirmed using nanoscale 2D AFM map, which clearly visualised biopolymers and hydroxyapatite (HAp) crystallites with larger mean crystallite size in ITD (32 ± 8 nm) than that in PTD (22 ± 3 nm). Correlative microscopy reveals that the principal difference between PTD and ITD arises primarily from the nanoscale packing density of the crystallites bonded together by thin biopolymer, with moderate contribution from the chemical composition difference. The structural difference results in the mechanical properties variation that is described by the parabolic stiffness-volume fraction correlation function introduced here. The obtained results benefit a microstructure-based mechano-chemical model to simulate the chemical etching process that can occur in human dental caries and some of its treatments.


Sign in / Sign up

Export Citation Format

Share Document