scholarly journals Ranking of a wide multidomain set of predictor variables of children obesity by machine learning variable importance techniques

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helena Marcos-Pasero ◽  
Gonzalo Colmenarejo ◽  
Elena Aguilar-Aguilar ◽  
Ana Ramírez de Molina ◽  
Guillermo Reglero ◽  
...  

AbstractThe increased prevalence of childhood obesity is expected to translate in the near future into a concomitant soaring of multiple cardio-metabolic diseases. Obesity has a complex, multifactorial etiology, that includes multiple and multidomain potential risk factors: genetics, dietary and physical activity habits, socio-economic environment, lifestyle, etc. In addition, all these factors are expected to exert their influence through a specific and especially convoluted way during childhood, given the fast growth along this period. Machine Learning methods are the appropriate tools to model this complexity, given their ability to cope with high-dimensional, non-linear data. Here, we have analyzed by Machine Learning a sample of 221 children (6–9 years) from Madrid, Spain. Both Random Forest and Gradient Boosting Machine models have been derived to predict the body mass index from a wide set of 190 multidomain variables (including age, sex, genetic polymorphisms, lifestyle, socio-economic, diet, exercise, and gestation ones). A consensus relative importance of the predictors has been estimated through variable importance measures, implemented robustly through an iterative process that included permutation and multiple imputation. We expect this analysis will help to shed light on the most important variables associated to childhood obesity, in order to choose better treatments for its prevention.

2019 ◽  
Author(s):  
Hal Tily ◽  
Ally Perlina ◽  
Eric Patridge ◽  
Stephanie Gline ◽  
Matvey Genkin ◽  
...  

AbstractLimiting post-meal glycemic response is an important factor in reducing the risk of chronic metabolic diseases, and contributes to significant health benefits in people with elevated levels of blood sugar. In this study, we collected gut microbiome activity (i.e., metatranscriptomic) data and measured the glycemic responses of 550 adults who consumed more than 30,000 meals from omnivore or vegetarian/gluten-free diets. We demonstrate that gut microbiome activity makes a statistically significant contribution to individual variation in glycemic response, in addition to anthropometric factors and the nutritional composition of foods. We describe predictive models (multilevel mixed-effects regression and gradient boosting machine) of variation in glycemic response among individuals ingesting the same foods. We introduce functional features aggregated from microbial activity data as candidates for association with mechanisms of glycemic control. In summary, we demonstrate for the first time that metatranscriptomic activity of the gut microbiome is correlated with glycemic response among adults.


An effective representation by machine learning algorithms is to obtain the results especially in Big Data, there are numerous applications can produce outcome, whereas a Random Forest Algorithm (RF) Gradient Boosting Machine (GBM), Decision tree (DT) in Python will able to give the higher accuracy in regard with classifying various parameters of Airliner Passengers satisfactory levels. The complex information of airline passengers has provided huge data for interpretation through different parameters of satisfaction that contains large information in quantity wise. An algorithm has to support in classifying these data’s with accuracies. As a result some of the methods may provide less precision and there is an opportunity of information cancellation and furthermore information missing utilizing conventional techniques. Subsequently RF and GBM used to conquer the unpredictability and exactness about the information provided. The aim of this study is to identify an Algorithm which is suitable for classifying the satisfactory level of airline passengers with data analytics using python by knowing the output. The optimization and Implementation of independent variables by training and testing for accuracy in python platform determined the variation between the each parameters and also recognized RF and GBM as a better algorithm in comparison with other classifying algorithms.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
B. A Omodunbi

Diabetes mellitus is a health disorder that occurs when the blood sugar level becomes extremely high due to body resistance in producing the required amount of insulin. The aliment happens to be among the major causes of death in Nigeria and the world at large. This study was carried out to detect diabetes mellitus by developing a hybrid model that comprises of two machine learning model namely Light Gradient Boosting Machine (LGBM) and K-Nearest Neighbor (KNN). This research is aimed at developing a machine learning model for detecting the occurrence of diabetes in patients. The performance metrics employed in evaluating the finding for this study are Receiver Operating Characteristics (ROC) Curve, Five-fold Cross-validation, precision, and accuracy score. The proposed system had an accuracy of 91% and the area under the Receiver Operating Characteristic Curve was 93%. The experimental result shows that the prediction accuracy of the hybrid model is better than traditional machine learning


2018 ◽  
Vol 7 (11) ◽  
pp. 428 ◽  
Author(s):  
Hyung-Chul Lee ◽  
Soo Yoon ◽  
Seong-Mi Yang ◽  
Won Kim ◽  
Ho-Geol Ryu ◽  
...  

Acute kidney injury (AKI) after liver transplantation has been reported to be associated with increased mortality. Recently, machine learning approaches were reported to have better predictive ability than the classic statistical analysis. We compared the performance of machine learning approaches with that of logistic regression analysis to predict AKI after liver transplantation. We reviewed 1211 patients and preoperative and intraoperative anesthesia and surgery-related variables were obtained. The primary outcome was postoperative AKI defined by acute kidney injury network criteria. The following machine learning techniques were used: decision tree, random forest, gradient boosting machine, support vector machine, naïve Bayes, multilayer perceptron, and deep belief networks. These techniques were compared with logistic regression analysis regarding the area under the receiver-operating characteristic curve (AUROC). AKI developed in 365 patients (30.1%). The performance in terms of AUROC was best in gradient boosting machine among all analyses to predict AKI of all stages (0.90, 95% confidence interval [CI] 0.86–0.93) or stage 2 or 3 AKI. The AUROC of logistic regression analysis was 0.61 (95% CI 0.56–0.66). Decision tree and random forest techniques showed moderate performance (AUROC 0.86 and 0.85, respectively). The AUROC of support the vector machine, naïve Bayes, neural network, and deep belief network was smaller than that of the other models. In our comparison of seven machine learning approaches with logistic regression analysis, the gradient boosting machine showed the best performance with the highest AUROC. An internet-based risk estimator was developed based on our model of gradient boosting. However, prospective studies are required to validate our results.


2018 ◽  
Vol 129 (4) ◽  
pp. 675-688 ◽  
Author(s):  
Samir Kendale ◽  
Prathamesh Kulkarni ◽  
Andrew D. Rosenberg ◽  
Jing Wang

AbstractEditor’s PerspectiveWhat We Already Know about This TopicWhat This Article Tells Us That Is NewBackgroundHypotension is a risk factor for adverse perioperative outcomes. Machine-learning methods allow large amounts of data for development of robust predictive analytics. The authors hypothesized that machine-learning methods can provide prediction for the risk of postinduction hypotension.MethodsData was extracted from the electronic health record of a single quaternary care center from November 2015 to May 2016 for patients over age 12 that underwent general anesthesia, without procedure exclusions. Multiple supervised machine-learning classification techniques were attempted, with postinduction hypotension (mean arterial pressure less than 55 mmHg within 10 min of induction by any measurement) as primary outcome, and preoperative medications, medical comorbidities, induction medications, and intraoperative vital signs as features. Discrimination was assessed using cross-validated area under the receiver operating characteristic curve. The best performing model was tuned and final performance assessed using split-set validation.ResultsOut of 13,323 cases, 1,185 (8.9%) experienced postinduction hypotension. Area under the receiver operating characteristic curve using logistic regression was 0.71 (95% CI, 0.70 to 0.72), support vector machines was 0.63 (95% CI, 0.58 to 0.60), naive Bayes was 0.69 (95% CI, 0.67 to 0.69), k-nearest neighbor was 0.64 (95% CI, 0.63 to 0.65), linear discriminant analysis was 0.72 (95% CI, 0.71 to 0.73), random forest was 0.74 (95% CI, 0.73 to 0.75), neural nets 0.71 (95% CI, 0.69 to 0.71), and gradient boosting machine 0.76 (95% CI, 0.75 to 0.77). Test set area for the gradient boosting machine was 0.74 (95% CI, 0.72 to 0.77).ConclusionsThe success of this technique in predicting postinduction hypotension demonstrates feasibility of machine-learning models for predictive analytics in the field of anesthesiology, with performance dependent on model selection and appropriate tuning.


2018 ◽  
Author(s):  
Reda Rawi ◽  
Raghvendra Mall ◽  
Chen-Hsiang Shen ◽  
Nicole A. Doria-Rose ◽  
S. Katie Farney ◽  
...  

Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have promising utility in prevention and treatment of HIV-1 infection with several undergoing clinical trials. Due to high sequence diversity and mutation rate of HIV-1, viral isolates are often resistant to particular bNAbs. Resistant strains are commonly identified by time-consuming and expensive in vitro neutralization experiments. Here, we developed machine learning-based classifiers that accurately predict resistance of HIV-1 strains to 33 neutralizing antibodies. Notably, our classifiers achieved an overall prediction accuracy of 96% for 212 clinical isolates from patients enrolled in four different clinical trials. Moreover, use of the tree-based machine learning method gradient boosting machine enabled us to identify critical epitope features that distinguish between antibody resistance and sensitivity. The availability of an in silico antibody resistance predictor will facilitate informed decisions of antibody usage in clinical settings.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5196
Author(s):  
Upma Singh ◽  
Mohammad Rizwan ◽  
Muhannad Alaraj ◽  
Ibrahim Alsaidan

In the last few years, several countries have accomplished their determined renewable energy targets to achieve their future energy requirements with the foremost aim to encourage sustainable growth with reduced emissions, mainly through the implementation of wind and solar energy. In the present study, we propose and compare five optimized robust regression machine learning methods, namely, random forest, gradient boosting machine (GBM), k-nearest neighbor (kNN), decision-tree, and extra tree regression, which are applied to improve the forecasting accuracy of short-term wind energy generation in the Turkish wind farms, situated in the west of Turkey, on the basis of a historic data of the wind speed and direction. Polar diagrams are plotted and the impacts of input variables such as the wind speed and direction on the wind energy generation are examined. Scatter curves depicting relationships between the wind speed and the produced turbine power are plotted for all of the methods and the predicted average wind power is compared with the real average power from the turbine with the help of the plotted error curves. The results demonstrate the superior forecasting performance of the algorithm incorporating gradient boosting machine regression.


Sign in / Sign up

Export Citation Format

Share Document