antibody resistance
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Gabriele Cerutti ◽  
Yicheng Guo ◽  
Liu Lihong ◽  
Zhening Zhang ◽  
Liyuan Liu ◽  
...  

The recently reported B.1.1.529 Omicron variant of SARS-CoV-2 includes 34 mutations in the spike protein relative to the Wuhan strain that initiated the COVID-19 pandemic, including 15 mutations in the receptor binding domain (RBD). Functional studies have shown omicron to substantially escape the activity of many SARS-CoV-2-neutralizing antibodies. Here we report a 3.1 Å resolution cryo-electron microscopy (cryo-EM) structure of the Omicron spike protein ectodomain. The structure depicts a spike that is exclusively in the 1-RBD-up conformation with increased mobility and inter-protomer asymmetry. Many mutations cause steric clashes and/or altered interactions at antibody binding surfaces, whereas others mediate changes of the spike structure in local regions to interfere with antibody recognition. Overall, the structure of the omicron spike reveals how mutations alter its conformation and explains its extraordinary ability to evade neutralizing antibodies.


2021 ◽  
Author(s):  
Lihong Liu ◽  
Sho Iketani ◽  
Yicheng Guo ◽  
Jasper Fuk-Woo Chan ◽  
Maple Wang ◽  
...  

The Omicron (B.1.1.529) variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings from our study. We found B.1.1.529 to be markedly resistant to neutralization by serum not only from convalescent patients, but also from individuals vaccinated with one of the four widely used COVID-19 vaccines. Even serum from persons vaccinated and boosted with mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies to all known epitope clusters on the spike protein, we noted that the activity of 18 of the 19 antibodies tested were either abolished or impaired, including ones currently authorized or approved for use in patients. In addition, we also identified four new spike mutations (S371L, N440K, G446S, and Q493R) that confer greater antibody resistance to B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260850
Author(s):  
Ho Jae Lim ◽  
Min Young Park ◽  
Hye Soo Jung ◽  
Youngjin Kwon ◽  
Inhee Kim ◽  
...  

Novel strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harboring nucleotide changes (mutations) in the spike gene have emerged and are spreading rapidly. These mutations are associated with SARS-CoV-2 transmissibility, virulence, or resistance to some neutralizing antibodies. Thus, the accurate detection of spike mutants is crucial for controlling SARS-CoV-2 transmission and identifying neutralizing antibody-resistance caused by amino acid changes in the receptor-binding domain. Here, we developed five SARS-CoV-2 spike gene primer pairs (5-SSG primer assay; 69S, 144S, 417S, 484S, and 570S) and verified their ability to detect nine key spike mutations (ΔH69/V70, T95I, G142D, ΔY144, K417T/N, L452R, E484K/Q, N501Y, and H655Y) using a Sanger sequencing-based assay. The 5-SSG primer assay showed 100% specificity and a conservative limit of detection with a median tissue culture infective dose (TCID50) values of 1.4 × 102 TCID50/mL. The accuracy of the 5-SSG primer assay was confirmed by next generation sequencing. The results of these two approaches showed 100% consistency. Taken together, the ability of the 5-SSG primer assay to accurately detect key SARS-CoV-2 spike mutants is reliable. Thus, it is a useful tool for detecting SARS-CoV-2 spike gene mutants in a clinical setting, thereby helping to improve the management of patients with COVID-19.


Nature ◽  
2021 ◽  
Vol 597 (7878) ◽  
pp. 703-708 ◽  
Author(s):  
Medini K. Annavajhala ◽  
Hiroshi Mohri ◽  
Pengfei Wang ◽  
Manoj Nair ◽  
Jason E. Zucker ◽  
...  

AbstractSARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1–3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.


2021 ◽  
Author(s):  
Sho Iketani ◽  
Lihong Liu ◽  
Manoj S Nair ◽  
Hiroshi Mohri ◽  
Maple Wang ◽  
...  

COVID-19 (coronavirus disease 2019) vaccines have been rapidly developed and deployed globally as a measure to combat the disease. These vaccines have been demonstrated to confer significant protection, but there have been reports of temporal decay in antibody titer. Furthermore, several variants have been identified with variable degrees of antibody resistance. These two factors suggest that a booster vaccination may be worthy of consideration. While such a booster dose has been studied as a series of three homologous vaccines in healthy individuals, to our knowledge, information on a heterologous regimen remains unreported, despite the practical benefits of such a scheme. Here, in this observational study, we investigated the serological profile of four healthy individuals who received two doses of the BNT162b2 vaccine, followed by a third booster dose with the Ad26.COV2.S vaccine. We found that while all individuals had spike-binding antibodies at each of the timepoints tested, there was an appreciable drop in titer by four months following the second vaccination. The third vaccine dose robustly increased titers beyond that of two vaccinations, and these elicited antibodies had neutralizing capability against all SARS-CoV-2 strains tested in both a recombinant vesicular stomatitis virus-based pseudovirus assay and an authentic SARS-CoV-2 assay, except for one individual against B.1.351 in the latter assay. Thus, a third COVID-19 vaccine dose in healthy individuals promoted not just neutralizing antibody potency, but also induced breadth against dominant SARS-CoV-2 variants.


2021 ◽  
Author(s):  
Romain Chautard ◽  
Laetitia Corset ◽  
Sajida Ibrahim ◽  
Céline Desvignes ◽  
Gilles Paintaud ◽  
...  

Structured abstract Background & aim: Resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer (CRC) is frequent and prognostic biomarkers are lacking. MicroRNAs (miR) are good candidates in this context. We aimed to characterize cetuximab and panitumumab exposure influence on miR expression in colorectal cancer cells to identify those regulating the EGFR pathway and implicated in resistance to treatment. Finally, we aimed to identify miR expression in serum of patients with advanced CRC treated with cetuximab or panitumumab. Results: Cetuximab and panitumumab exposure induced significant expression variations of 17 miR out of a miRnome panel of 752. Six of those miR interacted with at least one downstream element of the EGFR pathway. Conclusion: After the bioinformatics two-phase process, 5 miR rarely described before could be potential actors of anti-EGFR monoclonal antibody resistance: miR-95-3p, miR-139-5p, miR-145-5p, miR-429 and miR-1247-5p. In vivo, we detected the expression of miR-139-5p and miR-145-5p in serum of patients with metastatic CRC.


Science ◽  
2021 ◽  
Vol 373 (6555) ◽  
pp. eabi6226
Author(s):  
Sophie M.-C. Gobeil ◽  
Katarzyna Janowska ◽  
Shana McDowell ◽  
Katayoun Mansouri ◽  
Robert Parks ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with multiple spike mutations enable increased transmission and antibody resistance. We combined cryo–electron microscopy (cryo-EM), binding, and computational analyses to study variant spikes, including one that was involved in transmission between minks and humans, and others that originated and spread in human populations. All variants showed increased angiotensin-converting enzyme 2 (ACE2) receptor binding and increased propensity for receptor binding domain (RBD)–up states. While adaptation to mink resulted in spike destabilization, the B.1.1.7 (UK) spike balanced stabilizing and destabilizing mutations. A local destabilizing effect of the RBD E484K mutation was implicated in resistance of the B.1.1.28/P.1 (Brazil) and B.1.351 (South Africa) variants to neutralizing antibodies. Our studies revealed allosteric effects of mutations and mechanistic differences that drive either interspecies transmission or escape from antibody neutralization.


2021 ◽  
Author(s):  
Akatsuki Saito ◽  
Hesham Nasser ◽  
Keiya Uriu ◽  
Yusuke Kosugi ◽  
Takashi Irie ◽  
...  

During the current SARS-CoV-2 pandemic, a variety of mutations have been accumulated in the viral genome, and at least five variants of concerns (VOCs) have been considered as the hazardous SARS-CoV-2 variants to the human society. The newly emerging VOC, the B.1.617.2 lineage (delta variant), closely associates with a huge COVID-19 surge in India in Spring 2021. However, its virological property remains unclear. Here, we show that the B.1.617 variants are highly fusogenic and form prominent syncytia. Bioinformatic analyses reveal that the P681R mutation in the spike protein is highly conserved in this lineage. Although the P681R mutation decreases viral infectivity, this mutation confers the neutralizing antibody resistance. Notably, we demonstrate that the P681R mutation facilitates the furin-mediated spike cleavage and enhances and accelerates cell-cell fusion. Our data suggest that the P681R mutation is a hallmark characterizing the virological phenotype of this newest VOC, which may associate with viral pathogenicity.


2021 ◽  
Author(s):  
Son Tung Ngo

<div> <p><a>SARS-CoV-2 Spike (S) protein is a major biological target for COVID-19 vaccine design. Unfortunately, recent reports indicated that Spike (S) protein mutations can lead to antibody resistance. </a>However, understanding the process is limited, especially at the atomic scale. The structural change of S protein and neutralizing antibody fragment (FAb) complexes was thus probed using molecular dynamics (MD) simulations. In particular, backbone RMSD of the 501Y.V2 complex was significantly larger than that of the WT implying a large structural change of the mutation system. Moreover, the mean of , CCS, and SASA are almost the same when compared two complexes, but the distribution of these values are absolutely different. Furthermore, the free energy landscape of the complexes was significantly changed when the 501Y.V2 variant was induced. The binding pose between S protein and FAb was thus altered. The FAb-binding affinity to S protein was thus reduced due to revealing over steered-MD (SMD) simulations. The observation is in good agreement with the respective experiment that the 501Y.V2 SARS-CoV-2 variant can escape from neutralizing antibody (NAb).</p> </div>


Sign in / Sign up

Export Citation Format

Share Document