scholarly journals Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Je-Seung Jeon ◽  
Natalia Carreno-Quintero ◽  
Henriëtte D. L. M. van Eekelen ◽  
Ric C. H. De Vos ◽  
Jos M. Raaijmakers ◽  
...  

AbstractSeveral root-colonizing bacterial species can simultaneously promote plant growth and induce systemic resistance. How these rhizobacteria modulate plant metabolism to accommodate the carbon and energy demand from these two competing processes is largely unknown. Here, we show that strains of three Paraburkholderia species, P. graminis PHS1 (Pbg), P. hospita mHSR1 (Pbh), and P. terricola mHS1 (Pbt), upon colonization of the roots of two Broccoli cultivars led to cultivar-dependent increases in biomass, changes in primary and secondary metabolism and induced resistance against the bacterial leaf pathogen Xanthomonas campestris. Strains that promoted growth led to greater accumulation of soluble sugars in the shoot and particularly fructose levels showed an increase of up to 280-fold relative to the non-treated control plants. Similarly, a number of secondary metabolites constituting chemical and structural defense, including flavonoids, hydroxycinnamates, stilbenoids, coumarins and lignins, showed greater accumulation while other resource-competing metabolite pathways were depleted. High soluble sugar generation, efficient sugar utilization, and suppression or remobilization of resource-competing metabolites potentially contributed to curb the tradeoff between the carbon and energy demanding processes induced by Paraburkholderia-Broccoli interaction. Collectively, our results provide a comprehensive and integrated view of the temporal changes in plant metabolome associated with rhizobacteria-mediated plant growth promotion and induced resistance.

2007 ◽  
Vol 53 (2) ◽  
pp. 159-167 ◽  
Author(s):  
J.W. Kloepper ◽  
A. Gutiérrez-Estrada ◽  
J.A. McInroy

For several years, we have noticed that plant growth-promoting rhizobacteria (PGPR), which consistently promote plant growth in greenhouse tests during spring, summer, and fall, fail to elicit plant growth promotion during the midwinter under ambient light conditions. This report tests the hypothesis that photoperiod regulates elicitation of growth promotion and induced systemic resistance (ISR) by PGPR. A commercially available formulation of PGPR strains Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937a (BioYield®) was used to grow tomato and pepper transplants under short-day (8 h of light) (SD) and long-day (12 h of light) (LD) conditions. Results of many experiments indicated that under LD conditions, BioYield consistently elicited significant increases in root and shoot mass as well as in several parameters of root architecture. However, under SD conditions, such increases were not elicited. Differential root colonization of plants grown under LD and SD conditions and changes in leachate quality partially account for these results. BioYield elicited ISR in tomato and pepper under both LD and SD conditions, indicating that although growth promotion was not elicited under SD conditions, induced resistance was. Overall, the results indicate that PGPR-mediated growth promotion is regulated by photoperiod, while ISR is not.


HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 433-437 ◽  
Author(s):  
Charles S. Vavrina ◽  
Pamela D. Roberts ◽  
Nancy Kokalis-Burelle ◽  
Esa O. Ontermaa

Six greenhouse trials of five commercial products marketed as systemic resistance (SR) and plant growth promotion (PGP) inducers were evaluated on tomato (Lycopersicon esculentum Mill.) over a 21-month period. The effect of the inducers on treated plants was measured by monitoring plant growth and disease suppression after inoculation with either plant pathogenic bacteria or nematodes. The commercially available SR/PGP inducers included a bacterial suspension [Companion (Bacillus subtilis GB03)], two plant defense elicitors with nutrients (Keyplex 350DP plus Nutri-Phite, and Rezist with Cab'y), natural plant extracts (Liquid Seaweed Concentrate and Stimplex), and a synthetic growth regulator (Actigard 50W). Growth enhancement was noted in some trials, but the parameter of growth affected often varied with trial. Response to Actigard treatment included significant suppression of bacterial spot [Xanthomonas campestris pv. vesicatoria (Xcv)] in three of the six trials. Companion, Keyplex 350DP plus Nutri-Phite, Rezist and Cab'y, and seaweed products induced only partial disease suppression of bacterial spot in inoculated tomato plants. The alpha-keto acids plus nutrients (Keyplex 350DP plus Nutri-Phite) increased plant growth by 14.3% and improved root condition compared to the untreated control following exposure to nematodes. Results are encouraging, if not consistent, and with a greater understanding of the SR system and the conditions related to product efficacy, such materials may become effective tools for production agriculture.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 682
Author(s):  
Bruno Henrique Silva Dias ◽  
Sung-Hee Jung ◽  
Juliana Velasco de Castro Oliveira ◽  
Choong-Min Ryu

Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 137
Author(s):  
Maedeh Kamali ◽  
Dianjing Guo ◽  
Shahram Naeimi ◽  
Jafar Ahmadi

Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.


2020 ◽  
Vol 8 (7) ◽  
pp. 1037 ◽  
Author(s):  
Dragana Miljaković ◽  
Jelena Marinković ◽  
Svetlana Balešević-Tubić

Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.


2021 ◽  
Vol 49 (3) ◽  
pp. 12445
Author(s):  
Daonapa CHUNGLOO ◽  
Rujira TISARUM ◽  
Thapanee SAMPHUMPHUANG ◽  
Thanyaporn SOTESARITKUL ◽  
Suriyan CHA-UM

Paclobutrazol (PBZ) is a member of plant growth retardants, commonly applied for growth regulation, yield improvement, and biotic and abiotic stress alleviation. However, the effects of PBZ on turmeric (Curcuma longa L.; Zingiberaceae), a rhizomatous herb, have not been well established. The objective of this investigation was to gain a better understanding of the effect of PBZ on two different varieties of turmeric plants, ‘Surat Thani’ (‘URT’; high curcuminoids >5% w/w) and ‘Pichit’ (‘PJT’; low curcuminoids <3% w/w). Pseudostem height of cv. ‘PJT’ treated by 340 µM PBZ was significantly decreased by 14.82% over control, whereas it was unchanged in cv. ‘URT’. Interestingly, leaf greenness (SPAD value), maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (ΦPSII) in cv. ‘PJT’ treated by 340 µM PBZ were significantly elevated by 1.47, 1.28 and 1.23 folds, over control respectively. Net photosynthetic rate (Pn) in cv. ‘PJT’ declined by 38.58% (340 µM PBZ) over control, as a result of low levels of total soluble sugars (TSS; 127.8 mg g-1 DW) in turmeric rhizome. A positive relation between photosynthetic abilities and aerial fresh weight was demonstrated. In addition, a negative relationship between TSS and total curcuminoids was evidently found (R2 = 0.4524). Curcuminoids yield in turmeric rhizomes significantly dropped, depending on the degree of exogenous foliar PBZ applications. In summary, cv. PJT was found to be very sensitive to PBZ application, whereas rhizome yield and growth traits and high amount of curcuminoids were retained in cv. ‘URT’. Plant growth retention in turmeric cv. ‘URT’ using 170 mM PBZ foliar spray without negative effects on rhizome biomass and total curcuminoids content was demonstrated.


2018 ◽  
Vol 10 (10) ◽  
pp. 493
Author(s):  
José R. M. Campos Neto ◽  
Rafael Ribeiro Chaves ◽  
Diogo Herison Silva Sardinha ◽  
Luiz Gustavo de Lima Melo ◽  
Antônia Alice Costa Rodrigues

The objective of this work was to evaluate the effectiveness of seed treatment with fresh suspensions and powder formulations with Bacillus methylotrophicus to promote plant growth and induction of resistance against fusarium wilt (Fusarium oxysporum f. sp. lycopersici) in tomato plants under greenhouse conditions, verifying the occurrence of morphological and biochemical changes in the evaluated plants. Powder formulations based on Cassava (Manihot esculenta), Arrowroot (Maranta arundinacea) and sodium alginate containing Bacillus, in addition to the commercial product Quartz&reg;, were used to microbiolize the tomato seeds of the cultivar Santa Cruz. The formulations promoted plant growth, with a seedling vigor index greater than 50% for all treatments containing B. mthylotrophicus, in addition to a significant increase in total dry matter. The treatments induced systemic resistance, controlling the fusarium wilt with a 75% reduction of the disease and activation of enzymes such as peroxidase and polyphenoloxidase, only &beta;-1,3-glucanase presented less activity than controls (treatments without B. mthylotrophicus). Thus, the use of formulations containing Bacillus are efficient in promoting plant growth of tomato plants and in inducing resistance to the control of fusarium wilt.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1704
Author(s):  
Je-Seung Jeon ◽  
Desalegn W. Etalo ◽  
Natalia Carreno-Quintero ◽  
Ric C. H. de Vos ◽  
Jos M. Raaijmakers

Genome-wide analysis of plant-growth-promoting Pseudomonas fluorescens strain SS101 (PfSS101) followed by site-directed mutagenesis previously suggested that sulfur assimilation may play an important role in growth promotion and induced systemic resistance in Arabidopsis. Here, we investigated the effects of sulfur metabolism in PfSS101 on growth, defense, and shoot metabolomes of Arabidopsis and the Brassica crop, Broccoli. Root tips of seedlings of Arabidopsis and two Broccoli cultivars were treated with PfSS101 or with a mutant disrupted in the adenylsulfate reductase cysH, a key gene in cysteine and methionine biosynthesis. Phenotyping of plants treated with wild-type PfSS101 or its cysH mutant revealed that sulfur assimilation in PfSS101 was associated with enhanced growth of Arabidopsis but with a reduction in shoot biomass of two Broccoli cultivars. Untargeted metabolomics revealed that cysH-mediated sulfur assimilation in PfSS101 had significant effects on shoot chemistry of Arabidopsis, in particular on chain elongation of aliphatic glucosinolates (GLSs) and on indole metabolites, including camalexin and the growth hormone indole-3-acetic acid. In Broccoli, PfSS101 sulfur assimilation significantly upregulated the relative abundance of several shoot metabolites, in particular, indolic GLSs and phenylpropanoids. These metabolome changes in Broccoli plants coincided with PfSS101-mediated suppression of leaf infections by Xanthomonas campestris. Our study showed the metabolic interconnectedness of plants and their root-associated microbiota.


2020 ◽  
Author(s):  
Jingyuan Chen ◽  
Chhana Ullah ◽  
Daniel Giddings Vassão ◽  
Michael Reichelt ◽  
Jonathan Gershenzon ◽  
...  

Sclerotinia sclerotiorum is a devastating plant pathogen that causes substantial losses in various agricultural crops. Although plants have developed some well-known defense mechanisms against invasive fungi, much remains to be learned about plant responses to fungal pathogens. In this study we investigated how plant primary and secondary metabolism in the model plant Arabidopsis thaliana are affected by S. sclerotiorum infection. Our results showed that the contents of soluble sugars and amino acids changed significantly in A. thaliana leaves upon fungal colonization, with a decrease in sucrose and an increase in mannitol, attributed to fungal biosynthesis. Furthermore, the jasmonate signaling pathway was rapidly activated by S. sclerotiorum infection, and there was a striking accumulation of antifungal metabolites, such as camalexin, p-coumaroyl agmatine, feruloyl agmatine, and Nδ-acetylornithine. On the other hand, the characteristic defense compounds of the Brassicaceae, the glucosinolates, were not induced in A. thaliana infected by the fungus. Our study provides a better understanding of how A. thaliana primary and secondary metabolism are modified during infection by a fungal pathogen like S. sclerotiorum that has both hemibiotrophic and necrotrophic stages.


Sign in / Sign up

Export Citation Format

Share Document