scholarly journals Phylogenetic and genetic characterization of Treponema pallidum strains from syphilis patients in Japan by whole-genome sequence analysis from global perspectives

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shingo Nishiki ◽  
Kenichi Lee ◽  
Mizue Kanai ◽  
Shu-ichi Nakayama ◽  
Makoto Ohnishi

AbstractJapan has had a substantial increase in syphilis cases since 2013. However, research on the genomic features of the Treponema pallidum subspecies pallidum (TPA) strains from these cases has been limited. Here, we elucidated the genetic variations and relationships between TPA strains in Japan (detected between 2014 and 2018) and other countries by whole-genome sequencing and phylogenetic analyses, including syphilis epidemiological surveillance data and information on patient sexual orientation. Seventeen of the 20 strains in Japan were SS14- and the remaining 3 were Nichols-lineage. Sixteen of the 17 SS14-lineage strains were classified into previously reported Sub-lineage 1B. Sub-lineage 1B strains in Japan have formed distinct sub-clusters of strains from heterosexuals and strains from men who have sex with men. These strains were closely related to reported TPA strains in China, forming an East-Asian cluster. However, those strains in these countries evolved independently after diverging from their most recent common ancestor and expanded their genetic diversity during the time of syphilis outbreak in each country. The genetic difference between the TPA strains in these countries was characterized by single-nucleotide-polymorphism analyses of their penicillin binding protein genes. Taken together, our results elucidated the detailed phylogenetic features and transmission networks of syphilis.

Author(s):  
Francisco Díez-Fuertes ◽  
María Iglesias-Caballero ◽  
Javier García Pérez ◽  
Sara Monzón ◽  
Pilar Jiménez ◽  
...  

SARS-CoV-2 whole-genome analysis has identified five large clades worldwide, emerged in 2019 (19A and 19B) and in 2020 (20A, 20B and 20C). This study aims to analyze the diffusion of SARS-CoV-2 in Spain using maximum likelihood phylogenetic and Bayesian phylodynamic analyses. The most recent common ancestor (MRCA) of the SARS-CoV-2 pandemic was estimated in Wuhan, China, around November 24, 2019. Phylogenetic analyses of the first 12,511 SARS-CoV-2 whole genome sequences obtained worldwide, including 290 from 11 different regions of Spain, revealed 62 independent introductions of the virus in the country. Most sequences from Spain were distributed in clades characterized by D614G substitution in S gene (20A, 20B and 20C) and L84S substitution in ORF8 (19B) with 163 and 118 sequences, respectively, with the remaining sequences branching in 19A. A total of 110 (38%) sequences from Spain grouped in four different monophyletic clusters of 20A clade (20A-Sp1 and 20A-Sp2) and 19B clade (19B-Sp1 and 19B-Sp2) along with sequences from 29 countries worldwide. The MRCA of 19A-Sp1, 20A-Sp1, 19A-Sp2 and 20A-Sp2 clusters were estimated in Spain around January 21 and 29, and February 6 and 17, 2020, respectively. The prevalence of 19B clade in Spain (40%) was by far higher than in any other European country during the first weeks of the epidemic, probably by a founder effect. However, this variant was replaced by G614-bearing viruses in April. In vitro assays showed an enhanced infectivity of pseudotyped virions displaying G614 substitution compared with D614, suggesting a fitness advantage of D614G. IMPORTANCE Multiple SARS-CoV-2 introductions have been detected in Spain and at least four resulted in the emergence of locally transmitted clusters originated not later than mid-February, with further dissemination to many other countries around the world and a few weeks before the explosion of COVID-19 cases detected in Spain during the first week of March. The majority of the earliest variants detected in Spain branched in 19B clade (D614 viruses), which was the most prevalent clade during the first weeks of March, pointing to a founder effect. However, from mid-March to June, 2020, G614-bearing viruses (20A, 20B and 20C clades) overcame D614 variants in Spain, probably as a consequence of an evolutionary advantage of this substitution in the spike protein. A higher infectivity of G614-bearing viruses compared to D614 variants was detected, suggesting that this substitution in SARS-CoV-2 spike protein could be behind the variant shift observed in Spain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Song ◽  
Guang-Lin Cui ◽  
Qing-Lei Zeng

Even though the COVID-19 epidemic in China has been successfully put under control within a few months, it is still very important to infer the origin time and genetic diversity from the perspective of the whole genome sequence of its agent, SARS-CoV-2. Yet, the sequence of the entire virus genome from China in the current public database is very unevenly distributed with reference to time and place of collection. In particular, only one sequence was obtained in Henan province, adjacent to China's worst-case province, Hubei Province. Herein, we used high-throughput sequencing techniques to get 19 whole-genome sequences of SARS-CoV-2 from 18 severe patients admitted to the First Affiliated Hospital of Zhengzhou University, a provincial designated hospital for the treatment of severe COVID-19 cases in Henan province. The demographic, baseline, and clinical characteristics of these patients were described. To investigate the molecular epidemiology of SARS-CoV-2 of the current COVID-19 outbreak in China, 729 genome sequences (including 19 sequences from this study) sampled from Mainland China were analyzed with state-of-the-art comprehensive methods, including likelihood-mapping, split network, ML phylogenetic, and Bayesian time-scaled phylogenetic analyses. We estimated that the evolutionary rate and the time to the most recent common ancestor (TMRCA) of SARS-CoV-2 from Mainland China were 9.25 × 10−4 substitutions per site per year (95% BCI: 6.75 × 10−4 to 1.28 × 10−3) and October 1, 2019 (95% BCI: August 22, 2019 to November 6, 2019), respectively. Our results contribute to studying the molecular epidemiology and genetic diversity of SARS-CoV-2 over time in Mainland China.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yachen Hu ◽  
Zhenyu Wang ◽  
Bin Qiang ◽  
Yaohui Xu ◽  
Xiang Chen ◽  
...  

ABSTRACTSalmonella entericasubspeciesentericaserovar Gallinarum biovar Pullorum (S. Pullorum) is the etiological agent of pullorum disease, causing white diarrhea with high mortality in chickens. There are many unsolved issues surrounding the epidemiology ofS. Pullorum, including its origin and transmission history as well as the discordance between its phenotypic heterogeneity and genetic monomorphism. In this paper, we report the results of whole-genome sequencing of a panel of 97S. Pullorum strains isolated between 1962 and 2014 from four countries across three continents. We utilized 6,795 core genome single nucleotide polymorphisms (SNPs) to reconstruct a phylogenetic tree within a spatiotemporal Bayesian framework, estimating that the most recent common ancestor ofS. Pullorum emerged in ∼914 CE (95% confidence interval [95%CI], 565 to 1273 CE). The extantS. Pullorum strains can be divided into four distinct lineages, each of which is significantly associated with geographical distribution. The intercontinental transmissions of lineages III and IV can be traced to the mid-19th century and are probably related to the “Hen Fever” prevalent at that time. Further genomic analysis indicated that the loss or pseudogenization of functional genes involved in metabolism and virulence inS. Pullorum has been ongoing since before and after divergence from the ancestor. In contrast, multiple prophages and plasmids have been acquired byS. Pullorum, and these have endowed it with new characteristics, especially the multidrug resistance conferred by two large plasmids in lineage I. The results of this study provide insight into the evolution ofS. Pullorum and prove the efficiency of whole-genome sequencing in epidemiological surveillance of pullorum disease.IMPORTANCEPullorum disease, an acute poultry septicemia caused bySalmonellaGallinarum biovar Pullorum, is fatal for young chickens and is a heavy burden on poultry industry. The pathogen is rare in most developed countries but still extremely difficult to eliminate in China. Efficient epidemiological surveillance necessitates clarifying the origin of the isolates from different regions and their phylogenic relationships. Genomic epidemiological analysis of 97S. Pullorum strains was carried out to reconstruct the phylogeny and transmission history ofS. Pullorum. Further analysis demonstrated that functional gene loss and acquisition occurred simultaneously throughout the evolution ofS. Pullorum, both of which reflected adaptation to the changing environment. The result of our study will be helpful in surveillance and prevention of pullorum disease.


Author(s):  
Francisco Díez-Fuertes ◽  
María Iglesias-Caballero ◽  
Sara Monzón ◽  
Pilar Jiménez ◽  
Sarai Varona ◽  
...  

AbstractObjectivesSARS-CoV-2 whole-genome analysis has identified three large clades spreading worldwide, designated G, V and S. This study aims to analyze the diffusion of SARS-CoV-2 in Spain/Europe.MethodsMaximum likelihood phylogenetic and Bayesian phylodynamic analyses have been performed to estimate the most probable temporal and geographic origin of different phylogenetic clusters and the diffusion pathways of SARS-CoV-2.ResultsPhylogenetic analyses of the first 28 SARS-CoV-2 whole genome sequences obtained from patients in Spain revealed that most of them are distributed in G and S clades (13 sequences in each) with the remaining two sequences branching in the V clade. Eleven of the Spanish viruses of the S clade and six of the G clade grouped in two different monophyletic clusters (S-Spain and G-Spain, respectively), with the S-Spain cluster also comprising 8 sequences from 6 other countries from Europe and the Americas. The most recent common ancestor (MRCA) of the SARS-CoV-2 pandemic was estimated in the city of Wuhan, China, around November 24, 2019, with a 95% highest posterior density (HPD) interval from October 30-December 17, 2019. The origin of S-Spain and G-Spain clusters were estimated in Spain around February 14 and 18, 2020, respectively, with a possible ancestry of S-Spain in Shanghai.ConclusionsMultiple SARS-CoV-2 introductions have been detected in Spain and at least two resulted in the emergence of locally transmitted clusters, with further dissemination of one of them to at least 6 other countries. These results highlight the extraordinary potential of SARS-CoV-2 for rapid and widespread geographic dissemination.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jiafeng Zhang ◽  
Qin Fan ◽  
Mingyu Luo ◽  
Jiaming Yao ◽  
Xiaohong Pan ◽  
...  

Abstract Background In China, an HIV-infected man (complainant; P2) alleged that another man (defendant; P1) had unlawfully infected him with HIV through unprotected homosexual contact in 2018. Methods We employed epidemiological, serological and phylogenetic analyses to investigate the transmission linkage between two men who have sex with men (MSM). Partial segments of three HIV-1 gene regions (gag, pol, and env) were amplified and sequenced by cloning. Maximum-likelihood (ML) and Bayesian methods were used to determine the direction and estimate the timing of transmission. Local control sequences and database control sequences were also used in the phylogenetic analysis. Results It indicated that P2 underwent HIV seroconversion after P1 was diagnosed as HIV positive. The time to the most recent common ancestor (tMRCA) estimates consistently showed that P1 most likely became HIV-1 infected at an earlier date than P2. P1 and P2 were infected with the same HIV-1 CRF01_AE subtype according to segments of all three gene regions (gag, pol, and env). All three genetic regions of P1 have been subject to more potential selective forces than those of P2, indicating a longer evolutionary history. Bayesian and ML trees showed similar paraphyletic-monophyletic topologies of gag and env, with the virus from P1 located at the root, which supported a P1-to-P2 transmission direction. Conclusions Phylogenetic investigations can elucidate HIV transmission linkage and might empower its use in the opposition of the intentional transmission of HIV-1 as a forensic tool.


Author(s):  
Satoshi Nakano ◽  
Takao Fujisawa ◽  
Bin Chang ◽  
Yutaka Ito ◽  
Hideki Akeda ◽  
...  

After the introduction of the seven-valent pneumococcal conjugate vaccine, the global spread of multidrug resistant serotype 19A-ST320 strains became a public health concern. In Japan, the main genotype of serotype 19A was ST3111, and the identification rate of ST320 was low. Although the isolates were sporadically detected in both adults and children, their origin remains unknown. Thus, by combining pneumococcal isolates collected in three nationwide pneumococcal surveillance studies conducted in Japan between 2008 and 2020, we analyzed 56 serotype 19A-ST320 isolates along with 931 global isolates, using whole-genome sequencing to uncover the transmission route of the globally distributed clone in Japan. The clone was frequently detected in Okinawa Prefecture, where the U.S. returned to Japan in 1972. Phylogenetic analysis demonstrated that the isolates from Japan were genetically related to those from the U.S.; therefore, the common ancestor may have originated in the U.S. In addition, Bayesian analysis suggested that the time to the most recent common ancestor of the isolates form Japan and the U.S. was approximately the 1990s to 2000, suggesting the possibility that the common ancestor could have already spread in the U.S. before the Taiwan 19F-14 isolate was first identified in a Taiwanese hospital in 1997. The phylogeographical analysis supported the transmission of the clone from the U.S. to Japan, but the analysis could be influenced by sampling bias. These results suggested the possibility that the serotype 19A-ST320 clone had already spread in the U.S. before being imported into Japan.


2020 ◽  
Author(s):  
Manal Mohammed ◽  
Salina Thapa

Abstract Background: Salmonellosis is one of the most common foodborne diseases worldwide. Although human infection by non-typhoidal Salmonella (NTS) enterica subspecies enterica is associated primarily with a self-limiting diarrhoeal illness, invasive bacterial infections (such as septicaemia, bacteraemia and meningitis) were also reported. Human outbreaks of NTS were reported in several countries all over the world including developing as well as high-income countries. Conventional laboratory methods such as pulsed field gel electrophoresis (PFGE) do not display adequate discrimination and have their limitations in epidemiological surveillance. It is therefore very crucial to use accurate, reliable and highly discriminative subtyping methods for epidemiological characterisation and outbreak investigation. Methods: Here, we used different whole genome sequence (WGS)-based subtyping methods for retrospective investigation of two different outbreaks of Salmonella Typhimurium and Salmonella Dublin that occurred in 2013 in UK and Ireland respectively. Results: Single nucleotide polymorphism (SNP)-based cluster analysis of Salmonella Typhimurium genomes revealed well supported clades, that were concordant with epidemiologically defined outbreak and confirmed the source of outbreak is due to consumption of contaminated mayonnaise. SNP-analyses of Salmonella Dublin genomes confirmed the outbreak however the source of infection could not be determined. The core genome multilocus sequence typing (cgMLST) was discriminatory and separated the outbreak strains of Salmonella Dublin from the non-outbreak strains that were concordant with the epidemiological data however cgMLST could neither discriminate between the outbreak and non-outbreak strains of Salmonella Typhimurium nor confirm that contaminated mayonnaise is the source of infection, On the other hand, other WGS-based subtyping methods including multilocus sequence typing (MLST), ribosomal MLST (rMLST), whole genome MLST (wgMLST), clustered regularly interspaced short palindromic repeats (CRISPRs), prophage sequence profiling, antibiotic resistance profile and plasmid typing methods were less discriminatory and could not confirm the source of the outbreak. Conclusions: Foodborne salmonellosis is an important concern for public health therefore, it is crucial to use accurate, reliable and highly discriminative subtyping methods for epidemiological surveillance and outbreak investigation. In this study, we showed that SNP-based analyses do not only have the ability to confirm the occurrence of the outbreak but also to provide definitive evidence of the source of the outbreak in real-time.


1998 ◽  
Vol 88 (8) ◽  
pp. 782-787 ◽  
Author(s):  
Drake C. Stenger ◽  
Jeffrey S. Hall ◽  
Il-Ryong Choi ◽  
Roy French

The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5′ leader and 149-nt 3′-untranslated region and is polyadenylated at the 3′ end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5′-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3′). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus “Ipomovirus.” In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Mark Eppinger ◽  
Talima Pearson ◽  
Sara S. K. Koenig ◽  
Ofori Pearson ◽  
Nathan Hicks ◽  
...  

ABSTRACT For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade. IMPORTANCE In this genomic epidemiology study, we have applied high-resolution whole-genome-based sequence typing methodologies on a comprehensive set of genome sequences that have become available in the aftermath of the Haitian cholera epidemic. These sequence resources enabled us to reassess the degree of genomic heterogeneity within the Vibrio cholerae O1 serotype and to refine boundaries and evolutionary relationships. The established phylogenomic framework showed how outbreak isolates fit into the global phylogeographic patterns compared to a comprehensive globally and temporally diverse strain collection and provides strong molecular evidence that points to a nonindigenous source of the 2010 Haitian cholera outbreak and refines epidemiological standards used in outbreak investigations for outbreak inclusion/exclusion following the concept of genomic epidemiology. The generated phylogenomic data have major public health relevance in translating sequence-based information to assist in future diagnostic, epidemiological, surveillance, and forensic studies of cholera.


Sign in / Sign up

Export Citation Format

Share Document