scholarly journals (Pro)renin receptor involves in myocardial fibrosis and oxidative stress in diabetic cardiomyopathy via the PRR–YAP pathway

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shiran Yu ◽  
Xuefei Dong ◽  
Min Yang ◽  
Qingtao Yu ◽  
Jie Xiong ◽  
...  

Abstract(Pro)renin receptor (PRR) and Yes-associated protein (YAP) play an important role in cardiovascular diseases. However, the role of PRR–YAP pathway in the pathogenesis of DCM is also not clear. We hypothesized that PRR–YAP pathway may promote pathological injuries in DCM by triggering redox. Wistar rats and neonatal rat cardiac fibroblasts were respectively used in vivo and in vitro studies. In order to observe the effects of PRR mediated YAP pathway on the pathogenesis of DCM, animal experiments were divided into 3 parts, including the evaluation the effects of PRR overexpression, PRR RNAi silencing and YAP RNAi silencing. Recombinant-adenoviruses-carried-PRR-gene (Ad-PRR), Ad-PRR-shRNA and lentivirus-carried-YAP-shRNA were constructed and the effects of PRR mediated YAP on the pathogenesis of DCM were evaluated. YAP specific inhibitor Verteporfin was also administrated in cardiac fibroblasts to explore the impact of PRR–YAP pathway on oxidative stress and myocardial fibrosis. The results displayed that PRR overexpression could enhance YAP expression but PRR RNAi silencing down-regulated its expression. Moreover, PRR overexpression could exacerbate oxidative stress and myocardial fibrosis in DCM, and these pathological changes could be rescued by YAP blockade. We concluded that PRR–YAP pathway plays a key role in the pathogenesis of DCM.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zeping Qiu ◽  
Jingwen Zhao ◽  
Fanyi Huang ◽  
Luhan Bao ◽  
Yanjia Chen ◽  
...  

AbstractMyocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.


2008 ◽  
Vol 99 (3) ◽  
pp. 1394-1407 ◽  
Author(s):  
Sarah Potez ◽  
Matthew E. Larkum

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbital and ketamine/xylazine). We investigated the generation of calcium spikes, the propagation of action potentials (APs) along the apical dendrite and the somatic firing properties in the presence of anesthetics in vitro using dual somatodendritic whole cell recordings. Calcium spikes were evoked with dendritic current injection and high-frequency trains of APs at the soma. Surprisingly, we found that the direct actions of anesthetics on calcium spikes were very different. Two anesthetics (urethane and pentobarbital) suppressed dendritic calcium spikes in vitro, whereas a mixture of ketamine and xylazine enhanced them. Propagation of spikes along the dendrite was not significantly affected by any of the anesthetics but there were various changes in somatic firing properties that were highly dependent on the anesthetic. Last, we examined the effects of anesthetics on calcium spike initiation and duration in vivo using high-frequency trains of APs generated at the cell body. We found the same anesthetic-dependent direct effects in addition to an overall reduction in dendritic excitability in anesthetized rats with all three anesthetics compared with the slice preparation.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3216
Author(s):  
Maryvonne Ardourel ◽  
Chloé Felgerolle ◽  
Arnaud Pâris ◽  
Niyazi Acar ◽  
Khaoula Ramchani Ben Othman ◽  
...  

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jogender Mehla ◽  
Itender Singh ◽  
Deepti Diwan ◽  
James W. Nelson ◽  
Molly Lawrence ◽  
...  

AbstractPrevious reports indicate a potential role for signal transducer and activator of transcription 3 (STAT3) in amyloid-β (Aβ) processing and neuritic plaque pathogenesis. In the present study, the impact of STAT3 inhibition on cognition, cerebrovascular function, amyloid pathology, oxidative stress, and neuroinflammation was studied using in vitro and in vivo models of Alzheimer’s disease (AD)-related pathology. For in vitro experiments, human brain vascular smooth muscle cells (HBVSMC) and human brain microvascular endothelial cells (HBMEC) were used, and these cultured cells were exposed to Aβ peptides followed by measurement of activated forms of STAT3 expression and reactive oxygen species (ROS) generation. Further, 6 months old 5XFAD/APOE4 (5XE4) mice and age-matched negative littermates were used for in vivo experiments. These mice were treated with STAT3 specific inhibitor, LLL-12 for 2 months followed by neurobehavioral and histopathological assessment. In vitro experiments showed exposure of cerebrovascular cells to Aβ peptides upregulated activated forms of STAT3 and produced STAT3-mediated vascular oxidative stress. 5XE4 mice treated with the STAT3-specific inhibitor (LLL-12) improved cognitive functions and functional connectivity and augmented cerebral blood flow. These functional improvements were associated with a reduction in neuritic plaques, cerebral amyloid angiopathy (CAA), oxidative stress, and neuroinflammation. Reduction in amyloid precursor protein (APP) processing and attenuation of oxidative modification of lipoprotein receptor related protein-1 (LRP-1) were identified as potential underlying mechanisms. These results demonstrate the broad impact of STAT3 on cognitive functions, parenchymal and vascular amyloid pathology and highlight the therapeutic potential of STAT3 specific inhibition for treatment of AD and CAA.


Toxins ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 303 ◽  
Author(s):  
Maryam Assem ◽  
Mathilde Lando ◽  
Maria Grissi ◽  
Saïd Kamel ◽  
Ziad Massy ◽  
...  

Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes. Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive disorders and dementia. This review summarizes current evidence on the mechanisms by which uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications in CKD.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zhi Xin Shan ◽  
Lin lin Guo ◽  
Jie ning Zhu ◽  
Qiu xiong Lin ◽  
Chun yu Deng ◽  
...  

MicroRNAs play important roles in myocardial fibrosis during diabetic cardiomyopathy. The present study aimed to investigate the role of microRNA-208b (miR-208b) in diabetic myocardial fibrosis. Compared to the db/m control mice, Smad3 was activated , fibrosis-related genes expression were significantly up-regulated, and miRNAs were dysregulated in the myocardium of the 16-week-old diabetic db/db mice. miR-208b was confirmed up-regulated in the db/db diabetic myocardium in vivo and in mouse cardiomyocytes and cardiac fibroblasts after treatment with Ang-II, TGF-β and high glucose/glucose oxidase (HG/Go) in vitro , respectively. By using recombinant adenovirus expressing CD63-GFP, rAd-CD63-GFP, we infected neonatal mouse cardiomyocytes with rAd-CD63-GFP and tracked the secreted exosomes with GFP. We found that miR-208b was increased in the secreted exosomes from HG/Go-treated cardiomyocytes, and the exosomes with increased miR-208b could enhance fibrosis associated Col1a1, α-SMA and CTGF expressions in cardiac fibroblasts. Transfection of miR-208b mimic could increase Col1a1, α-SMA and CTGF expression in a dose-dependent manner in cardiac fibroblasts. However, blockage of miR-208b could inhibit fibrosis related genes expression. Mtf2 and Pgrmc1 were verified modulated by miR-208b at post transcriptional level in vitro . Consistently, Mtf2 and Pgrmc1 expressions were decreased in the diabetic myocardium, and knockdown of Mtf2 or Pgrmc1could increase fibrosis related genes expression in cardiac fibroblasts. Smad3 inhibitor, Naringenin, could dramatically inhibit miR-208b expression in cardiac fibroblasts. Taken together, we demonstrated that miR-208b was up-regulated in diabetic fibrotic myocardium, Mtf2 and Pgrmc1 mediated the effect of miR-208b on enhancing Col1a1, α-SMA and CTGF expression in diabetic myocardial fibrosis.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2636 ◽  
Author(s):  
Laurine Garros ◽  
Samantha Drouet ◽  
Cyrielle Corbin ◽  
Cédric Decourtil ◽  
Thibaud Fidel ◽  
...  

Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.


2020 ◽  
Vol 245 (12) ◽  
pp. 1016-1028 ◽  
Author(s):  
Solomon E Owumi ◽  
Isaac A Adedara ◽  
Ayomide P Akomolafe ◽  
Ebenezer O Farombi ◽  
Adegboyega K Oyelere

Aflatoxin B1 (AFB1) is reported to elicit adverse reproductive outcomes in animals. Gallic acid (GA) is known to exhibit antioxidant and inflammatory bioactivities. The impact of GA on AFB1-facilitated reproductive dysfunction is nonexistent in literature. This investigation elucidated GA protective effect on AFB1-induced reproductive toxicities in rats, exposed for 28 consecutive days to AFB1 (75 µg/kg), or co-treated with GA (20 or 40 mg/kg) body weight. AFB1 significantly (p  <  0.05) reduced testicular function biomarkers, serum hormonal levels, and functional sperm characteristics in experimental animals. GA abated AFB1-induced increases (p  <  0.05) in lipid peroxidation and reactive oxygen and nitrogen species, suppressed myeloperoxidase, interleukin-1β, nitric oxide, and tumor necrosis factor-α levels—inflammatory biomarkers—in testes, epididymis, and hypothalamus. Furthermore, GA improved antioxidant defenses and alleviated reduction in interleukin-10, caspase-3 activation, and histological variations in epididymis, testes, and hypothalamus of rats dosed with AFB1. Conclusively, GA enhanced reproductive function in AFB1-exposed rats by modulating inflammatory, oxidative stress, and apoptosis mediators. Impact statement Infertility resulting from reproductive deficiency can be stressful. Exposure to aflatoxin B1, a dietary mycotoxin prevalent in improperly stored grains, is reported to elicit reproductive insufficiencies and infertility. We, therefore, examined the likely beneficial effect of gallic acid (GA) a phytochemical, recognized to exhibit in vitro and in vivo pharmacological bioactivities against oxidative stress and related inflammatory damages in rats, since AFB1 toxicities are predicated on oxidative epoxide formation, in a bid to proffer new evidence to advance the field of nutriceutical application from plant-derived chemopreventive agents. Our findings will advance the field of chemoprevention by presenting data absent in the literature on GA. Our results demonstrate further evidence for GA conferred protection against AFB1-mediated histological lesions in testes, epididymis, and hypothalamus of treated rats; suppresses oxidative damages, relieved inflammatory and apoptotic responses, restored sperm functional characteristics, and hormonal levels relevant for reproductive integrity and function.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Qian Wang ◽  
Xin Sui ◽  
Rui Chen ◽  
Pei-Yong Ma ◽  
Yong-Liang Teng ◽  
...  

Angiotensin (Ang) II contributes to the formation and development of myocardial fibrosis. Ghrelin, a gut peptide, has demonstrated beneficial effects against cardiovascular disease. In the present study, we explored the effect and related mechanism of Ghrelin on myocardial fibrosis in Ang II-infused rats. Adult Sprague-Dawley (SD) rats were divided into 6 groups: Control, Ang II (200ng/kg/min, microinfusion), Ang II+Ghrelin (100μg/kg, subcutaneously twice daily), Ang II+Ghrelin+GW9662 (a specific PPAR-γinhibitor, 1 mg/kg/d, orally), Ang II+GW9662, and Ghrelin for 4 wks. In vitro, adult rat cardiac fibroblasts (CFs) were pretreated with or without Ghrelin, Ghrelin+GW9662, or anti-Transforming growth factor (TGF)-β1 antibody and then stimulated with or without Ang II (100 nmol/L) for 24 h. Ang II infusion significantly increased myocardial fibrosis, expression of collagen I, collagen III, and TGF-β1, as well as TGF-β1 downstream proteins p-Smad2, p-Smad3, TRAF6, and p-TAK1 (all p<0.05). Ghrelin attenuated these effects. Similar results were seen in Ang II-stimulated rat cardiac fibroblasts in vitro. In addition, Ghrelin upregulated PPAR-γexpressionin vivoandin vitro, and treatment with GW9662 counteracted the effects of Ghrelin. In conclusion, Ghrelin ameliorated Ang II-induced myocardial fibrosis by upregulating PPAR-γand in turn inhibiting TGF-β1signaling.


Author(s):  
Huiling Zhou ◽  
Lijun Liu ◽  
Xiaolong Ma ◽  
Jian Wang ◽  
Jinfu Yang ◽  
...  

AbstractVinblastine (VBL) has been considered as a first-line anti-tumor drug for many years. However, vinblastine-caused myocardial damage has been continually reported. The underlying molecular mechanism of the myocardial damage remains unknown. Here, we show that vinblastine induces myocardial damage and necroptosis is involved in the vinblastine-induced myocardial damage both in vitro and in vivo. The results of WST-8 and flow cytometry analysis show that vinblastine causes damage to H9c2 cells, and the results of animal experiments show that vinblastine causes myocardial cell damage. The necrosome components, receptor-interacting protein 1 (RIP1) receptor-interacting protein 3 (RIP3), are significantly increased in vinblastine-treated H9c2 cells, primary neonatal rat ventricular myocytes and rat heart tissues. And the downstream substrate of RIP3, mixed lineage kinase domain like protein (MLKL) was also increased. Pre-treatment with necroptosis inhibitors partially inhibits the necrosome components and MLKL levels and alleviates vinblastine-induced myocardial injury both in vitro and in vivo. This study indicates that necroptosis participated in vinblastine-evoked myocardial cell death partially, which would be a potential target for relieving the chemotherapy-related myocardial damage.


Sign in / Sign up

Export Citation Format

Share Document