scholarly journals Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. M. Faridul Hasan ◽  
Péter György Horváth ◽  
Zsófia Kóczán ◽  
Tibor Alpár

AbstractCoir is one of the most important natural fibers having significant potentiality in structural biocomposites production. The long coir fiber (LCF) and short fibrous chips (CFC) were extracted from the husk of coconut. The dimensions of the CFC were within 1.0–12.5 mm and the LCF were within 2.0 mm. All the fibers and fibrous chips were treated with 5% NaOH (alkali) before the biocomposite manufacturing. Different percentages (8%, 10%, and 12%) of melamine-urea-formaldehyde (MUF) were used to produce the tri-layered medium density composite panels with 12 mm thickness. The mechanical properties (tensile, flexural, and internal bonding strengths) of coir reinforced multilayered composites has been studied for all the produced biocomposites. The morphological, micro-structural, and bonding mechanisms were investigated by Scanning electron microscope and Fourier-transform infrared spectroscopy analysis. Thermal properties of the biocomposites were studied by thermal conductivity, thermogravimetric analysis, and derivative thermogravimetry characterization. The moisture contents of the final composite panels were also investigated in this study. The main objective of this work is to investigate the influences of MUF on treated coir fiber and fibrous chips reinforced tri-layered biocomposites. Beside, a novel sustainable product is developed through reinforcing the fibrous chip with coir fiber in terms of multilayered biocomposite panels.

2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.


Most studies on the application of natural fibers as reinforcement in polymer composites are growing as a result of the changes in characteristics that fibers can provide for the product. This can be achieved by manufacturing of composites using Hand Layup process. The 2% NaOH fiber treatment was performed to improve fiber-matrix interfaces making spathefibre-reinforced composites better mechanical characteristics. Filler loadings as 5% by volume of coir fiber are selected as reinforcement in composites. The varying lengths of fiber chosen as 5mm, 10mm & 15mm and resin-hardner ratio are maintained as 10:0.8. A total 3 numbers of plates with volume as 300 х 300 х 4 mm3 were produced and specimens as per the various ASTM standard were tested to determine the ultimate various Mechanical properties for different configuration. The strength of epoxy resin / coir fiber composites was noticed at a maximum 15 mm (15.27 N / mm2 ) fiber length. The maximum impact strength of the charpy was also 15 mm fiber length (9.87 kJ / m2 ).The Experimental results were validated using a numerical method technique in FEA software. The obtained results by experimentation and Finite Element Analysis are very much closer to each other. The results show good mechanical properties and hint us as a replacement for conventional materials in industrial applications.


2021 ◽  
Author(s):  
Vikas Ghanwat ◽  
Jivan Mule ◽  
Saurabh Telore ◽  
Vijay Bhosale ◽  
Sudarshan Patale

The use of natural fibers as reinforcement in polymeric composites is increasing thanks to the improvements in properties that fibers can provide to the merchandise. Composites materials were prepared by compression molding technique with hand layup process. Treatment of fiber with 2% NaOH was carried out in order to improve the interfacial bonds between fiber and matrix leading to better mechanical properties of the spathe-fiber-reinforced composite laminates. Filler loading as 5% by volume of coir fiber or epoxy resin composites have been formulated. The fiber length was chosen as 5mm, 10mm & 15mm and the ratio of epoxy resin: hardener was maintained as 10:0.8. A total three plates with dimension as 300 mm х 300 mm х 4 mm were produced and specimens as per the varied ASTM standard were tested to determine the ultimate tensile strength, strain energy, flexural strength, strain energy and micro hardness value for different configuration. It was observed that the lastingness of epoxy resin/ coir fiber composites was maximum at 15mm fiber length (16.27 N/mm2). The charpy notch impact strength was also maximum at 15mm fiber length (10.87 kJ/m2). The results show good mechanical properties and hint us as a replacement for conventional materials in industrial applications.


2021 ◽  
Author(s):  
Mahesh Gund ◽  
R T Vyavahare

In recent years, composite material is used as an alternative material for materials like metal, wood, etc. due to low in weight, strength to weight ratio and stiffness properties. Natural fibers like coir fiber, palm fiber, jute fiber, banana plant fiber, etc have low cost, easy availability and less harmful to human body. Also, carbon fiber having various properties such as high strength to weight ratio, rigidity, good tensile strength, fatigue resistance, fire resistance/not flammable, high thermal conductivity. This research work aims to find out the mechanical properties of Carbon fiber, Coir fiber and Epoxy composite material with different ply orientations angles by using FEA software Ansys APDL R15.0.


2019 ◽  
Vol 895 ◽  
pp. 176-180
Author(s):  
C.K. Yogish ◽  
S. Pradeep ◽  
B. Kuldeep ◽  
K.P. Ravikumar ◽  
Rao R. Raghavendra

Over the last decades composite materials, plastics and ceramics have been the dominant emerging materials. The volume and number of applications of composite materials have grown steadily, penetrating and conquering new markets relentlessly. So everybody is concentrating on new materials which will be strong enough, less weight, recyclable with reduced cost. Hence all the researchers are concentrated on the composite materials which have all the above properties. The present work is concentrated on coconut coir fiber and Rice husk reinforced polyester hybrid composites. The composites specimen was fabricated with various weight percentages of natural fibers namely coconut coir (20%, 15%, 10%, and 5%) and Rice husk (15%, 10%, and 5%) combined with CamElect 3321 resin using hand lay-up method. So to obtain new composite materials different proportions of coconut coir and Rice husk is added and the mechanical properties such as Tensile strength, Flexural Strength and Impact test were carried out for the samples cut from the fabricated composites specimen to the dimensions as per ASTM standard. With the increasing percentage of the reinforcements the performance of the material is improving. The tensile strength increases with the increase in coir reinforcement percentage and flexural strength increases with the increasing in percentage of the rice husk and the impact strength of the material gets boost with equal proportional percentage of coconut coir and rice husk reinforcement.


2011 ◽  
Vol 8 (4) ◽  
pp. 1478-1489 ◽  
Author(s):  
A. S. SINGHA ◽  
B. S. Kaith ◽  
Inderjeet Kaur ◽  
Ashwarya Jyoti Khanna

Natural fibers play an important role in developing high performing fully biodegradable composites which will be a key material to solve the current ecological and environmental problems. Due to enormous advantages of composites reinforced with natural fibers, a study on pine needles reinforced urea-resorcinol-formaldehyde composites has been made. Present investigation has revealed that urea-formaldehyde resin in 1.0: 2.5 ratio exhibits optimum mechanical behavior whereas in case urea-resorcinol- formaldehyde resin, the best mechanical behavior was shown by 1.0: 1.0: 2.5 ratios. However, reinforcing of this resin with pine-needles of 1 cm size and evaluation of their mechanical properties showed that mechanical properties increase with reinforcement. These results were further supported by theSEMand thermal studies.


2021 ◽  
Vol 11 (3) ◽  
pp. 177-189
Author(s):  
Irwan Suriaman ◽  
Jooned Hendrarsakti ◽  
Yati Mardiyati ◽  
Ari Darmawan Pasek

In line with economic growth, material requirements in the industrial sector will increase. Industries are required to use materials that are safe for human health, environmentally friendly and utilize local raw materials. Currently, industries in general still use synthetic materials based on petroleum residues that contain many hazardous chemicals. Therefore, natural fiber has the potential to be used as a substitute for synthetic materials, especially in Indonesia which is rich in natural fibers resources. This will have an impact on the socio-economy of the local community so that it can grow the rural economic sector. Natural fibers have high economic value that can be used for various raw material needs for strategic industries. A good natural fiber processing mechanism will produce products that can be marketed globally with guaranteed product quality. This research analyzes the effect of alkali treatment of ramie, sugar palm and coir fiber on the increase in mechanical properties of the fiber. The mechanical properties were analyzed through tensile strength testing of single fiber according to ASTM D3822 standard using a textechno favigraph machine. In addition, this research is supported by data from thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results showed that the fibers that had been given an alkali treatment had better mechanical properties compared to untreated fibers. Increased tensile strength of fibers was observec after being treated with alkali for ramie 81%, sugar palm 52% and coir 56%. The advantage of this alkaline treatment method is that no heating is involved and the treatment procedures are more practical compared to other methods.


With low cost, simplicity of manufacturing and the abundant availability of natural fibers have tempted the researchers to try the available fibres and to investigate their possibility of using it for the purpose of reinforcement. Since Coir fiber is renewable, eco-friendly, less weight and has good mechanical performance it is considered as one of the best alternative to Carbon fiber. In this present work the ability of coir fibre in improving the mechanical characteristic has been studied. Four specimens having different weight fractions (5%,10%,15% &20%) of coir fiber with polyester matrix is prepared and their corresponding mechanical properties has been determined. In this work the fiber is treated with Sodium Hydroxide (NaOH) for attaining good fiber separation and hand- lay-up practice have been employed for composite manufacturing. To find the mechanical characteristics of composite the following tests were performed on the prepared specimens like tensile test, Flexure and hardness test. Experimental result reveals that the composite with 15% coir fiber have a maximum tensile strength of 26.5Mpa From the Experimental results it is evident that the increase in coir fiber weight fraction results in improving the mechanical properties of the composite.


2008 ◽  
Vol 5 (4) ◽  
pp. 782-791 ◽  
Author(s):  
A. S. Singha ◽  
Vijay Kumar Thakur

Renewable resources such as natural fibers in the field of fiber reinforced materials with their new range of applications represent an important basis in order to fulfill the ecological objective of creating eco-friendly materials. In views of enormous advantages a study on green composites usingSaccaharum cilliarefiber as a reinforcing material and urea-formaldehyde (UF) as a novel matrix has been made. First of all urea-formaldehyde resin synthesized was reinforced withSaccaharum cilliarefiber. Reinforcement of the fiber was accomplished in three different forms particle (200 micron) reinforcement, short fiber (3 mm.) reinforcement and long fiber (6 mm) reinforcement. Present work reveals that mechanical properties such as: tensile strength, compressive strength and wear resistance of urea -formaldehyde resin (UF) increases to a significant extent when reinforced withSaccaharum cilliarefiber which is found in outsized amount in the Himalayan Region. These mechanical properties mainly depend upon the dimensions of the fiber used. Analysis of results shows that particle reinforcement is more effective as compared to short and long fiber reinforcement. Morphological and thermal studies of these composites have also been carried out.


Sign in / Sign up

Export Citation Format

Share Document