scholarly journals Mechanical Behavior of Natural Fiber Composite Material

Author(s):  
Vikas Ghanwat ◽  
Jivan Mule ◽  
Saurabh Telore ◽  
Vijay Bhosale ◽  
Sudarshan Patale

The use of natural fibers as reinforcement in polymeric composites is increasing thanks to the improvements in properties that fibers can provide to the merchandise. Composites materials were prepared by compression molding technique with hand layup process. Treatment of fiber with 2% NaOH was carried out in order to improve the interfacial bonds between fiber and matrix leading to better mechanical properties of the spathe-fiber-reinforced composite laminates. Filler loading as 5% by volume of coir fiber or epoxy resin composites have been formulated. The fiber length was chosen as 5mm, 10mm & 15mm and the ratio of epoxy resin: hardener was maintained as 10:0.8. A total three plates with dimension as 300 mm х 300 mm х 4 mm were produced and specimens as per the varied ASTM standard were tested to determine the ultimate tensile strength, strain energy, flexural strength, strain energy and micro hardness value for different configuration. It was observed that the lastingness of epoxy resin/ coir fiber composites was maximum at 15mm fiber length (16.27 N/mm2). The charpy notch impact strength was also maximum at 15mm fiber length (10.87 kJ/m2). The results show good mechanical properties and hint us as a replacement for conventional materials in industrial applications.

Most studies on the application of natural fibers as reinforcement in polymer composites are growing as a result of the changes in characteristics that fibers can provide for the product. This can be achieved by manufacturing of composites using Hand Layup process. The 2% NaOH fiber treatment was performed to improve fiber-matrix interfaces making spathefibre-reinforced composites better mechanical characteristics. Filler loadings as 5% by volume of coir fiber are selected as reinforcement in composites. The varying lengths of fiber chosen as 5mm, 10mm & 15mm and resin-hardner ratio are maintained as 10:0.8. A total 3 numbers of plates with volume as 300 х 300 х 4 mm3 were produced and specimens as per the various ASTM standard were tested to determine the ultimate various Mechanical properties for different configuration. The strength of epoxy resin / coir fiber composites was noticed at a maximum 15 mm (15.27 N / mm2 ) fiber length. The maximum impact strength of the charpy was also 15 mm fiber length (9.87 kJ / m2 ).The Experimental results were validated using a numerical method technique in FEA software. The obtained results by experimentation and Finite Element Analysis are very much closer to each other. The results show good mechanical properties and hint us as a replacement for conventional materials in industrial applications.


Lubricants ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 42 ◽  
Author(s):  
Marko Milosevic ◽  
Petr Valášek ◽  
Alessandro Ruggiero

In the framework of green materials, in recent years, natural fiber composites attracted great attention of academia and industry. Their mechanical and tribological characteristics, such as high strength, elasticity, friction, and wear resistance, make them suitable for a wide range of industrial applications in which issues regarding a large amount of disposal are to be considered since their environmental friendliness gives them an advantage over conventional synthetic materials. Based on the recent and relevant investigations found in the scientific literature, an overview focused on the tribological characteristics of composite materials reinforced with different types of natural fibers is presented. The aim is to introduce the reader to the issues, exploring the actual knowledge of the friction and wear characteristics of the composites under the influence of different operating parameters, as well as the chemical treatment of fibers. The main experimental tribological techniques and the main used apparatus are also discussed, with the aim of highlighting the most appropriate future research directions to achieve a complete framework on the tribological behavior of many possible natural fiber composite materials.


2013 ◽  
Vol 718-720 ◽  
pp. 63-68 ◽  
Author(s):  
Raja R. Niranjan ◽  
S. Junaid Kokan ◽  
R. Sathya Narayanan ◽  
S. Rajesh ◽  
V.M. Manickavasagam ◽  
...  

The natural fibre composite materials are nowadays playing a vital role in replacing the conventional and synthetic materials for industrial applications. This paper proposes a natural fiber composite made of Abaca fibre as reinforcing agent with Epoxy resin as the matrix, manufactured using Hand Lay-up method. Glass Fiber Reinforced Plastics (woven rovings) are used to improve the surface finish and impart more strength and stiffness to natural fibers. In this work, the fibers are arranged in alternative layers of abaca in horizontal and vertical orientation. The mechanical properties of the composite are determined by testing the samples for tensile and flexural strength. It is observed that the tensile strength of the composite material is dependent on the strength of the natural fiber and also on the interfacial adhesion between the reinforcement and the matrix. The composite is developed for automobile dashboard/mudguard application. It may also be extended to biomedical, electronics and sports goods manufacturing. It can also be used in marine products due to excellent resistance of abaca to salt water damage since the tensile strength when it is wet.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
I. Jenish ◽  
A. Felix Sahayaraj ◽  
V. Suresh ◽  
J. Mani raj ◽  
M. Appadurai ◽  
...  

Natural fiber composite materials are competent materials that may replace conventional synthetic materials where the strength to weight ratio is essential. In this paper, the mechanical characteristics of composites made up of randomly oriented natural fibers (mudar fiber and snake grass fiber) with nano-silica filler are detailed for the first time. From the various literature surveys, the critical length of mudar and snake grass fiber is chosen as 40 mm and 30 mm, respectively. The test samples were prepared with a fiber content of 10%, 20%, 30%, and 40% with an equal amount of mudar and snake grass fiber. The percentage of nano-filler is maintained as constant as 3% with all the compositions. The composites showed that the highest mechanical properties were found at 30% fiber volume. The maximum tensile strength is 45 MPa, and the flexural strength is 51 MPa. The maximum impact strength is 4.5 J. Sample ID 3 provided the best results compared to other proportions. The fiber/matrix adhesion was investigated using a scanning electron microscope (SEM). These predominant mechanical properties make it easier for the implementation of the prepared composite material in structural and automotive applications.


2019 ◽  
Vol 8 (4) ◽  
pp. 6972-6977

The use of natural fiber composite has been widely promoted in many industries such as construction, automotive and even aerospace. Natural fibers can be extracted from plants that are abundantly available in the form of waste such as sunflower seed shells (SSS) and groundnut shells (GNS). These fibers were chosen as the reinforcement in epoxy to form composites. The performance of composites was evaluated following the ASTM D3039 and ASTM D790 for tensile and flexural tests respectively. Eight types of composites were prepared using SSS and GNS fibers as reinforcement and epoxy as the matrix with the fiber content of 20wt %. The fibers were untreated and treated with Sodium Hydroxide (NaOH) at various concentrations (6%, 10%, 15%, and 20%) and soaking time (24, 48 and 72 hours). The treatment has successfully enhanced the mechanical properties of both composites, namely SSS/epoxy and GNS/epoxy composites. The SSS/epoxy composite has the best mechanical properties when the fibers were treated for 48 hours using 6% of NaOH that produced 22 MPa and 13 MPa of tensile and flexural strength respectively. Meanwhile, the treatment on groundnut shells with 10% sodium Hydroxide for 24 hours has increased the Flexural strength tremendously (53%), however no significant effect on the tensile strength. The same trend was also observed on the tensile and flexural modulus. The increase of 41% in flexural modulus after treatment with 10% NaOH for 24 hours was also the evidence of mechanical properties enhancement. The evidence of improved fiber and matrix bonding after fiber treatment was also observed using a scanning electron microscope (SEM). The SSS/epoxy composites performed better in tensile application, meanwhile the GNS/epoxy composites are good in flexural application.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mallika Datta ◽  
Debasish Das ◽  
Devarun Nath

Purpose The study aims to review the literatures on the effect of fiber length on the mechanical response of natural fiber composite will help the researchers to know about the perspective of the various natural fibers in making of composite concerning fiber length. The review summarized the work of the other researchers, thereby unambiguously précised suitability of a specific natural fiber for a matrix in use. Thus, one can identify the use of the same fibers–matrix combination to obtain composites with different properties with the control of fiber/matrix interface. Design/methodology/approach The review work proposes a new kind of diagrammatic representation that expresses the influence of fiber length. This work has not been explored before in this specific format. The chronology of work may help to select natural fibers for use in composites for a specific matrix. Findings The length of the fiber perception in terms of “critical” length decides the need for pre-treatment process of natural fiber to improve shear stress at the interface for various matrices. Originality/value The current review paper attempts to shed light on the association between the fiber length of natural fiber and the mechanical response of natural fiber composite. Moreover, it probes the concepts of critical fiber length as a persuadable factor.


10.29007/zhrd ◽  
2018 ◽  
Author(s):  
Jay Khatri ◽  
Haresh Patolia ◽  
Ketul Brahmbhatt

Natural fiber composite materials are gradually becoming more popular due to light weight, low cost, bio degradability, easy to manufacture, lower environmental impact and less energy requirement for manufacturing. These properties of natural fiber make it suitable for automobile, aerospace and other industrial applications. In present study, analysis of mechanical properties like tensile strength, flexural strength, impact strength and Young’s modulus are carried out for various composites. Free vibration characteristics of natural fiber composite beams are also studied analysed. In addition to analytical study, finite element analysis also carried out using ANSYS. In this, the test specimens were modelled in accordance to experimental test specimen and model analysis is performed.


Polymer materials synthetic fibers, for example, glass and carbon gives point of interest of high stiffness and strength to weight proportion when compare with conventional construction materials, for example wood, cement and steel. The accessibility of natural fibers and comfort of manufacturing have attempted researchers to try locally accessible inexpensive fibers and do study for their feasibility of strengthening purpose. Accordingly, many researchers do broad study on the properties of polymer matrix composite. The synthetic fiber substituting with the natural fiber for example, jute, sisal, pineapple and bamboo. The natural fiber removed by retting and manual procedures were exposed to soluble base treatment. this study is concerned with the investigation of mechanical properties of Grewia Optiva and jute fiber with epoxy resin matrix-based polymer composites. study investigate the tensile, bending and abrasion behavior of composites material made by grewia optiva and jute into epoxy resin. result shows that the better tensile strength of Grewia optiva fiber composite.


2019 ◽  
Vol 809 ◽  
pp. 433-438 ◽  
Author(s):  
Natalie Vellguth ◽  
Tanja Rudeck ◽  
Madina Shamsuyeva ◽  
Franz Renz ◽  
Hans Josef Endres

An effective integration of natural fibers into engineering thermoplastics requires sufficient thermal stability of natural fibers during processing, since melting temperature of engineering thermoplastics lies above 200 °C. The aim of the work was to protect natural fibers from the heat of the molten thermoplastic via coating with a modified epoxy resin, thus enabling manufacture of natural fiber-reinforced engineering thermoplastic composites with minimized thermal degradation of the fibers. Processing temperature comprised the range of engineering thermoplastic polyamide 6 (PA6), which was 225 °C. Flax fabrics were spray coated with partially bio-based epoxy resin and incorporated via hot press technique into a PA6 matrix. The composite samples including spray coated flax fibers as well as the reference flax fibers without coating were characterized with regard to their mechanical properties, namely bending and tensile tests, thermal properties with differential scanning calorimetry (DSC) as well as thermogravimetric analysis (TGA) and optical via scanning electron microscopy (SEM) and computer tomography (CT). The results show that this approach enables manufacture of composites with reproducible mechanical properties, i.e. bending and tensile properties as well as enhanced thermal stabilities.


2020 ◽  
Vol 9 (1) ◽  
pp. 2744-2751

Natural fiber reinforced composites are gaining popularity over conventional materials due its low cost, easy accessibility, non toxicity and most important feature - the biodegradability. Since broad varieties of natural fibers are available on earth, hence their merits can be incorporated in one by means of hybridization. Matured sponge gourd, which turns into a net structured fibrous mass on sun drying, is amalgamated with coconut coir as reinforcement along with epoxy resin as matrix material in a composite. The present study was carried out to explore the impact of change in weight percentages of sponge gourd fiber and coir on the mechanical properties and moisture affinity. The alkali treated fibers were turned into composites by dint of Hand Layup technique. The various mechanical properties were evaluated according to ASTM protocol. After the successful conclusion of the experiments, it was found that composite with maximum weight percentage of coir showed superlative tensile and impact strength whereas the composite with highest sponge fibre content showed maximum flexural strength. The composite with equal sponge fiber-coir weight percentage displayed lowest affinity towards moisture.


Sign in / Sign up

Export Citation Format

Share Document