scholarly journals Human BM-MSC secretome enhances human granulosa cell proliferation and steroidogenesis and restores ovarian function in primary ovarian insufficiency mouse model

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hang-soo Park ◽  
Rishi Man Chugh ◽  
Abdeljabar El Andaloussi ◽  
Elie Hobeika ◽  
Sahar Esfandyari ◽  
...  

AbstractPrimary ovarian insufficiency (POI) is defined as the loss of ovarian function before 40 years of age. It clinically manifests as amenorrhea, infertility, and signs of estrogen insufficiency. POI is frequently induced by chemotherapy. Gonadotoxic chemotherapy reagents damage granulosa cells, which are essential for follicular function and development. Our recently published studies demonstrated that intraovarian transplantation of human mesenchymal stem cells (hMSCs) can restore fertility in a chemotherapy-induced POI mouse model. However, the regenerative mechanism underlying the hMSC effect in POI mice is not fully understood. Here, we report that the hMSC secretome increased the proliferation of human granulosa cells (HGrC1). We showed by FACS analysis that treatment of HGrC1 cells with hMSC-conditioned media (hMSC CM) stimulates cellular proliferation. We also demonstrated that the expression of steroidogenic enzymes involved in the production of estrogen, CYP19A1 and StAR, are significantly elevated in hMSC CM-treated HGrC1 cells. Our data suggest that hMSC CM stimulates granulosa cell proliferation and function, which may explain the therapeutic effect of hMSCs in our chemotherapy-induced POI animal model. Our findings indicate that the hMSC secretome may be a novel treatment approach for restoring granulosa cell and ovarian function in patients with POI.

2021 ◽  
Author(s):  
Si-Ji Lv ◽  
Shu-Hui Hou ◽  
Lei Gan ◽  
Jing Sun

Abstract Background: This study aimed to establish a lipopolysaccharide (LPS)-induced primary ovarian insufficiency (POI) mouse model and to investigate the underlying mechanism.Methods: C57BL/6N female mice were intraperitoneally injected with low-dose LPS (0.5 mg/kg) once daily for 14 days, high-dose LPS (2.5 mg/kg) twice weekly for 2 weeks, and cyclophosphamide (CTX; 150 mg/kg) once weekly for 2 weeks. Ovarian function was assessed by measuring the length of the estrous cycle, the number of primordial follicles, and the levels of serum pituitary/ovarian hormones. Expression and production of interleukin 1β (IL-1β) were determined to evaluate ovarian inflammation. Histopathological examination was performed to examine ovarian fibrosis. TUNEL assay was carried out to evaluate granulosa cell apoptosis. Western blotting was performed to measure the levels of inflammation-, fibrosis-, and apoptosis-related proteins in mouse ovaries.Results: Like CTX, both low- and high-dose LPS administration significantly impaired ovarian functions in mice, as evidenced by extended lengths of estrous cycles, reduced counts of primordial follicles, and alterations in the levels of serum hormones. Also, LPS administration promoted granulosa cell apoptosis and ovarian fibrosis in mice. However, LPS but not CTX significantly promoted IL-1β expression and production in mice. Moreover, LPS treatment but not CTX significantly enhanced TLR, p-p65, p65, and MyD88 protein expression in mouse ovaries, suggesting that LPS differs from CTX in triggering ovarian inflammation. In general, continuous low-dose LPS stimulation was less potent than high-dose LPS stimulation in the above-mentioned effects.Conclusions: LPS induces ovarian inflammation, fibrosis, and granulosa cell apoptosis and can be used to establish a POI model in mice.


1994 ◽  
Vol 140 (2) ◽  
pp. 313-319 ◽  
Author(s):  
P Ovesen ◽  
H J Ingerslev ◽  
H Ørskov ◽  
T Ledet

Abstract Numerous clinical and experimental observations have suggested that GH is important in ovarian function. We have investigated the effect of GH alone and GH in combination with FSH on the secretion of oestradiol, progesterone, insulin-like growth factor-I (IGF-I) and IGF-binding protein-1 (IGFBP-1) and on [3H]thymidine incorporation in cultured human luteinized granulosa cells. Granulosa cells from patients undergoing treatment for in vitro fertilization were isolated and cultured for 2 days in culture medium with 10% serum. After this preincubation, the medium was removed and the cells were incubated with GH (1, 10 and 100 μg/l) with or without FSH in serum-free medium and in the presence of [3H]methylthymidine (2 μCi/ml). GH alone resulted in a significant dose-dependent increase of oestradiol (P<0·05) and in IGFBP-1 (P<0·002) in the medium. The release of IGF-I was undetectable and there was no increase in [3H]thymidine incorporation with GH alone. Neither GH nor FSH alone stimulated granulosa cell proliferation or progesterone release, while the combination induced increases (P<0·001) in both. The stimulatory effect of GH on steroidogenesis, IGFBP-1 production and granulosa cell proliferation supports a putative role for GH in the regulation of ovarian function. Journal of Endocrinology (1994) 140, 313–319


2016 ◽  
Vol 22 (6) ◽  
pp. 384-396 ◽  
Author(s):  
Carola Conca Dioguardi ◽  
Bahar Uslu ◽  
Monique Haynes ◽  
Meltem Kurus ◽  
Mehmet Gul ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 2856-2871 ◽  
Author(s):  
Marie-Cécile De Cian ◽  
Elodie P. Gregoire ◽  
Morgane Le Rolle ◽  
Simon Lachambre ◽  
Magali Mondin ◽  
...  

Abstract R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/β-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally. Strikingly, follicles lacking Ctnnb1 failed to develop beyond the primary stage. These results show that RSPO2 acts in a paracrine manner to sustain granulosa cell proliferation in early developing follicles. Taken together, our data demonstrate that the activation of WNT/CTNNB1 signaling by RSPO2 is essential for oocyte-granulosa cell interactions that drive maturation of the ovarian follicles and eventually female fertility.


Author(s):  
Tianyanxin Sun ◽  
Francisco J. Diaz

Abstract Background The Hippo pathway plays critical roles in regulating cell proliferation, differentiation and survival among species. Hippo pathway proteins are expressed in the ovary and are involved in ovarian function. Deletion of Lats1 causes germ cell loss, ovarian stromal tumors and reduced fertility. Ovarian fragmentation induces nuclear YAP1 accumulation and increased follicular development. At ovulation, follicular cells stop proliferating and terminally differentiate, but the mechanisms controlling this transition are not completely known. Here we explore the role of Hippo signaling in mouse granulosa cells before and during ovulation. Methods To assess the effect of oocytes on Hippo transcripts in cumulus cells, cumulus granulosa cells were cultured with oocytes and cumulus oocyte complexes (COCs) were cultured with a pSMAD2/3 inhibitor. Secondly, to evaluate the criticality of YAP1 on granulosa cell proliferation, mural granulosa cells were cultured with oocytes, YAP1-TEAD inhibitor verteporfin or both, followed by cell viability assay. Next, COCs were cultured with verteporfin to reveal its role during cumulus expansion. Media progesterone levels were measured using ELISA assay and Hippo transcripts and expansion signatures from COCs were assessed. Lastly, the effects of ovulatory signals (EGF in vitro and hCG in vivo) on Hippo protein levels and phosphorylation were examined. Throughout, transcripts were quantified by qRT-PCR and proteins were quantified by immunoblotting. Data were analyzed by student’s t-test or one-way ANOVA followed by Tukey’s post-hoc test or Dunnett’s post-hoc test. Results Our data show that before ovulation oocytes inhibit expression of Hippo transcripts and promote granulosa cell survival likely through YAP1. Moreover, the YAP1 inhibitor verteporfin, triggers premature differentiation as indicated by upregulation of expansion transcripts and increased progesterone production from COCs in vitro. In vivo, ovulatory signals cause an increase in abundance of Hippo transcripts and stimulate Hippo pathway activity as indicated by increased phosphorylation of the Hippo targets YAP1 and WWTR1 in the ovary. In vitro, EGF causes a transient increase in YAP1 phosphorylation followed by decreased YAP1 protein with only modest effects on WWTR1 in COCs. Conclusions Our results support a YAP1-mediated mechanism that controls cell survival and differentiation of granulosa cells during ovulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Si-Ji Lv ◽  
Shu-Hui Hou ◽  
Lei Gan ◽  
Jing Sun

This study is aimed at establishing a lipopolysaccharide- (LPS-) induced primary ovarian insufficiency (POI) mouse model and investigating the underlying mechanism. C57BL/6N female mice were intraperitoneally injected with low-dose LPS (0.5 mg/kg) once daily for 14 days, high-dose LPS (2.5 mg/kg) twice weekly for 2 weeks, or cyclophosphamide (CTX; 150 mg/kg) once weekly for 2 weeks. Ovarian function was assessed by measuring the length of estrous cycle, the number of primordial follicles, and the levels of serum hormones. Expression and production of interleukin 1β (IL-1β) were determined to evaluate ovarian inflammation. Histopathological examination was performed to examine ovarian fibrosis. TUNEL assay was carried out to evaluate granulosa cell apoptosis. Western blotting was performed to measure the levels of inflammation-, fibrosis-, and apoptosis-related proteins in the mouse ovaries. Like CTX, both low- and high-dose LPS significantly impaired ovarian functions in mice, as evidenced by extended lengths of estrous cycles, reduced counts of primordial follicles, and alterations in the levels of serum hormones. Also, LPS promoted granulosa cell apoptosis and ovarian fibrosis in mice. However, LPS but not CTX promoted IL-1β expression and production in mice. Moreover, LPS but not CTX enhanced TLR, p-p65, p65, and MyD88 expression in mouse ovaries, suggesting that LPS differs from CTX in triggering ovarian inflammation. In general, continuous low-dose LPS stimulation was less potent than high-dose LPS to affect the ovarian functions. In conclusion, LPS may induce ovarian inflammation, fibrosis, and granulosa cell apoptosis and can be used to establish a POI model in mice.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 929-935 ◽  
Author(s):  
Pradeep P. Kayampilly ◽  
K. M. J. Menon

FSH, acting through multiple signaling pathways, regulates the proliferation and growth of granulosa cells, which are critical for ovulation. The present study investigated whether AMP-activated protein kinase (AMPK), which controls the energy balance of the cell, plays a role in FSH-mediated increase in granulosa cell proliferation. Cells isolated from immature rat ovaries were grown in serum-free, phenol red free DMEM-F12 and were treated with FSH (50 ng/ml) for 0, 5, and 15 min. Western blot analysis showed a significant reduction in AMPK activation as observed by a reduction of phosphorylation at thr 172 in response to FSH treatment at all time points tested. FSH also reduced AMPK phosphorylation in a dose-dependent manner with maximum inhibition at 100 ng/ml. The chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, 0.5 mm) increased the cell cycle inhibitor p27 kip expression significantly, whereas the AMPK inhibitor (compound C, 20 μm) and FSH reduced p27kip expression significantly compared with control. FSH treatment resulted in an increase in the phosphorylation of AMPK at ser 485/491 and a reduction in thr 172 phosphorylation. Inhibition of Akt phosphorylation using Akt inhibitor VIII reversed the inhibitory effect of FSH on thr 172 phosphorylation of AMPK, whereas ERK inhibitor U0126 had no effect. These results show that FSH, through an Akt-dependent pathway, phosphorylates AMPK at ser 481/495 and inhibits its activation by reducing thr 172 phosphorylation. AMPK activation by 5-amino-imidazole-4-carboxamide-1-β-d-ribofuranoside treatment resulted in a reduction of cell cycle regulatory protein cyclin D2 mRNA expression, whereas FSH increased the expression by 2-fold. These results suggest that FSH promotes granulosa cell proliferation by increasing cyclin D2 mRNA expression and by reducing p27 kip expression by inhibiting AMPK activation through an Akt-dependent pathway. FSH stimulates granulosa cell proliferation by reducing cell cycle inhibitor p27 kip through AMP kinase inhibition.


2021 ◽  
Vol 22 (4) ◽  
pp. 2047
Author(s):  
Nina Schmid ◽  
Kim-Gwendolyn Dietrich ◽  
Ignasi Forne ◽  
Alexander Burges ◽  
Magdalena Szymanska ◽  
...  

Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1–7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.


2020 ◽  
Vol 29 ◽  
pp. 096368972091830 ◽  
Author(s):  
Ping Zhou ◽  
Andrew Irving ◽  
Huifang Wu ◽  
Juan Luo ◽  
Johana Aguirre ◽  
...  

Given the crucial role of microRNAs in the cellular proliferation of various types of cancers, we aimed to analyze the expression and function of a cellular proliferation-associated miR-188-5p in papillary thyroid carcinoma (PTC). Here we demonstrate that miR-188-5p is downregulated in PTC tumor tissues compared with the associated noncancerous tissues. We also validate that the miR-188-5p overexpression suppressed the PTC cancer cell proliferation. In addition, fibroblast growth factor 5 (FGF5) is observed to be downregulated in the PTC tumor tissues compared with the associated noncancerous tissues. Subsequently, FGF5 is identified as the direct functional target of miR-188-5p. Moreover, the silencing of FGF5 was found to inhibit PTC cell proliferation, which is the same pattern as miR-188-5p overexpression. These results suggest that miR-188-5p-associated silencing of FGF5 inhibits tumor cell proliferation in PTC. It also highlights the importance of further evaluating miR-188-5p as a potential biomarker and therapy target in PTC.


Reproduction ◽  
2012 ◽  
Vol 144 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Isha Sharma ◽  
Dheer Singh

Conjugated linoleic acid (CLA) has drawn much interest in last two decades in the area ranging from anticancer activity to obesity. A number of research papers have been published recently with regard to CLA's additional biological functions as reproductive benefits. However, not much is known how this mixture of isomeric compounds mediates its beneficial effects particularly on fertility. In this study, we demonstrated the cross talk between downstream signaling of CLA and important hormone regulators of endocrine system, i.e. FSH and IGF1, on buffalo granulosa cell function (proliferation and steroidogenesis). Experiments were performed in primary serum-free buffalo granulosa cell culture, where cells were incubated with CLA in combination with FSH (25 ng/ml) and IGF1 (50 ng/ml). Results showed that 10 μM CLA inhibits FSH- and IGF1-induced granulosa cell proliferation; aromatase,GATA4, andIGF1mRNA; and estradiol-17β production. Western blot analysis of total cell lysates revealed that CLA intervenes the IGF1 signaling by decreasing p-Akt. In addition, CLA was found to upregulate peroxisome proliferator-activated receptor-gamma (PPARG) and phosphatase and tensin homolog (PTEN) level in granulosa cells. Further study using PPARG- and PTEN-specific inhibitors supports the potential role of CLA in granulosa cell proliferation and steroidogenesis involving PPARG, PTEN, and PI3K/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document