scholarly journals Pharmacological targeting of host chaperones protects from pertussis toxin in vitro and in vivo

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharina Ernst ◽  
Ann-Katrin Mittler ◽  
Veronika Winkelmann ◽  
Carolin Kling ◽  
Nina Eberhardt ◽  
...  

AbstractWhooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.

2020 ◽  
Author(s):  
Katharina Ernst ◽  
Ann-Katrin Mittler ◽  
Veronika Winkelmann ◽  
Nina Eberhardt ◽  
Anna Anastasia ◽  
...  

AbstractWhooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, the role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is characterized in detail. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing cytosolic PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


2018 ◽  
Vol 86 (6) ◽  
pp. e00004-18 ◽  
Author(s):  
Edith Acquaye-Seedah ◽  
Elizabeth E. Reczek ◽  
Hugh H. Russell ◽  
Andrea M. DiVenere ◽  
Sara O. Sandman ◽  
...  

ABSTRACTDespite high vaccination rates, the incidence of whooping cough has steadily been increasing in developing countries for several decades. The current acellular pertussis (aP) vaccines all include the major protective antigen pertussis toxin (PTx) and are safer, but they appear to be less protective than infection or older, whole-cell vaccines. To better understand the attributes of individual antibodies stimulated by aP, we isolated plasmablast clones recognizing PTx after booster immunization of two donors. Five unique antibody sequences recognizing native PTx were recovered and expressed as recombinant human IgG1 antibodies. The antibodies all bind different epitopes on the PTx S1 subunit, B oligomer, or S1-B subunit interface, and just one clone neutralized PTx in anin vitroassay. To better understand the epitopes bound by the nonneutralizing S1-subunit antibodies, comprehensive mutagenesis with yeast display provided a detailed map of the epitope recognized by antibodies A8 and E12. Residue R76 is required for antibody A8 binding and is present on the S1 surface but is only partially exposed in the holotoxin, providing a structural explanation for A8's inability to neutralize holotoxin. The B-subunit-specific antibody D8 inhibited PTx binding to a model receptor and neutralized PTxin vitroas well as in anin vivoleukocytosis assay. This is the first study, to our knowledge, to identify individual human antibodies stimulated by the acellular pertussis vaccine and demonstrates the feasibility of using these approaches to address outstanding issues in pertussis vaccinology, including mechanisms of accelerated waning of protective immunity despite repeated aP immunization.


2021 ◽  
Author(s):  
Manish Bodas ◽  
Bharathiraja Subramaniyan ◽  
Andrew R. Moore ◽  
Jordan P. Metcalf ◽  
Sarah R. Ocañas ◽  
...  

AbstractBasal cells (BC) are the resident stem/progenitor cells of the adult pseudostratified airway epithelium, whose differentiation program is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor mediated signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are largely unknown. In the present study we used an in vitro air-liquid interface model of the human pseudostratified airway epithelium to identify the NOTCH3-dependent downstream genes/pathways that regulate human BC to club cell differentiation. Activation of NOTCH3 signaling in BC via lentivirus-mediated over-expression of the active NOTCH3 intracellular domain (NICD3) promoted club cell differentiation. Bulk RNA-seq analysis of control vs NICD3-transduced cells, identified 692 NICD3 responsive genes enriched for pathways linked to airway epithelial biology and differentiation including Wnt/β-catenin Signaling. Expression of the classical NOTCH target HEYL increased in response to NOTCH3 activation and positively correlated with expression of the club cell marker SCGB1A1. Further, using single-cell RNA-seq, we report that HEYL+ cells primarily clustered with SCGB1A1+ and NOTCH3+ cells. Moreover, HEYL protein co-localized with SCGB1A1 in ALI cultures in vitro and in the human and mouse airway epithelium in vivo. siRNA-mediated knockdown of HEYL in BC led to changes in epithelial structure including altered morphology and significant reductions in transepithelial electrical resistance and expression of tight junction related genes. Finally, HEYL knockdown significantly reduced the number of SCGB1A1+ club cells, along with a corresponding increase in KRT8+ BC-intermediate cells. Overall, our data identifies NOTCH3-HEYL signaling as a key regulator of BC to club cell differentiation.


2000 ◽  
Vol 48 (4) ◽  
pp. 523-533 ◽  
Author(s):  
Emmanuel Mongodin ◽  
Odile Bajolet ◽  
Jocelyne Hinnrasky ◽  
Edith Puchelle ◽  
Sophie de Bentzmann

Staphylococcus aureus is a common human pathogen involved in non-bronchial diseases and in genetic and acquired bronchial diseases. In this study, we applied an immunolabeling approach for in vivo and in vitro detection of S. aureus, based on the affinity of staphylococcal protein A (SpA) for the Fc region of immunoglobulins, especially IgG. Most strains of S. aureus, including clinical strains, can be detected with this labeling technique. The approach can be used for detection and localization with transmission electron microscopy or light-fluorescence microscopy of S. aureus in infected tissues such as human bronchial tissue from cystic fibrosis (CF) patients. The methodology can also be applied to cell culture models with the aim of characterizing bacterial adherence to epithelial cells in backscattered electron imaging with scanning electron microscopy. Application to the study of S. aureus adherence to airway epithelium showed that the bacteria did not adhere in vivo to intact airway epithelium. In contrast, bacteria adhered to the basolateral plasma membrane of columnar cells, to basal cells, to the basement membrane and were identified beneath the lamina propria when the epithelium was injured and remodeled, or in vitro when the epithelial cells were dedifferentiated.


1990 ◽  
Vol 172 (3) ◽  
pp. 861-868 ◽  
Author(s):  
A Podda ◽  
L Nencioni ◽  
M T De Magistris ◽  
A Di Tommaso ◽  
P Bossù ◽  
...  

PT-9K/129G, a nontoxic mutant of pertussis toxin (PT) obtained by genetic manipulation, has been shown in animal models to be a promising candidate for new vaccines against whooping cough. To assess the safety and the immunogenicity of PT-9K/129G in humans, a pilot study has been performed in adult volunteers. The protein was found to be safe, capable of inducing high titers of toxin-neutralizing antibodies, and capable of generating immunological memory. In fact, vaccination caused an increase of cell-mediated response to PT, PT-9K/129G, S1 subunit, and B oligomer, indicating that memory T cells are induced by the vaccine. Since PT-9K/129G is mitogenic for T lymphocytes in vitro, it was investigated whether this activity is also present in vivo. No variation was observed in the proportion of T cells (CD3+), T helper cells (CD4+), and cytotoxic T cells (CD8+), as well as in that of other lymphoid populations, by FACS analysis. Interestingly, no thorough correlation was found between humoral and cellular responses. In one case, a very high cellular response was present in absence of detectable antibodies, suggesting that the antibody response, which is the only parameter measured in most clinical trials, may not give a complete picture of the response induced by a vaccine.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 480
Author(s):  
Carolin Kling ◽  
Arto T. Pulliainen ◽  
Holger Barth ◽  
Katharina Ernst

Bordetella pertussis causes the severe childhood disease whooping cough, by releasing several toxins, including pertussis toxin (PT) as a major virulence factor. PT is an AB5-type toxin, and consists of the enzymatic A-subunit PTS1 and five B-subunits, which facilitate binding to cells and transport of PTS1 into the cytosol. PTS1 ADP-ribosylates α-subunits of inhibitory G-proteins (Gαi) in the cytosol, which leads to disturbed cAMP signaling. Since PT is crucial for causing severe courses of disease, our aim is to identify new inhibitors against PT, to provide starting points for novel therapeutic approaches. Here, we investigated the effect of human antimicrobial peptides of the defensin family on PT. We demonstrated that PTS1 enzyme activity in vitro was inhibited by α-defensin-1 and -5, but not β-defensin-1. The amount of ADP-ribosylated Gαi was significantly reduced in PT-treated cells, in the presence of α-defensin-1 and -5. Moreover, both α-defensins decreased PT-mediated effects on cAMP signaling in the living cell-based interference in the Gαi-mediated signal transduction (iGIST) assay. Taken together, we identified the human peptides α-defensin-1 and -5 as inhibitors of PT activity, suggesting that these human peptides bear potential for developing novel therapeutic strategies against whooping cough.


1979 ◽  
Vol 83 (3) ◽  
pp. 605-614 ◽  
Author(s):  
F J Chlapowski ◽  
L Haynes

The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium.


2020 ◽  
Author(s):  
Piero Zollet ◽  
Timothy E.Yap ◽  
M Francesca Cordeiro

The transparent eye media represent a window through which to observe changes occurring in the retina during pathological processes. In contrast to visualising the extent of neurodegenerative damage that has already occurred, imaging an active process such as apoptosis has the potential to report on disease progression and therefore the threat of irreversible functional loss in various eye and brain diseases. Early diagnosis in these conditions is an important unmet clinical need to avoid or delay irreversible sight loss. In this setting, apoptosis detection is a promising strategy with which to diagnose, provide prognosis, and monitor therapeutic response. Additionally, monitoring apoptosis in vitro and in vivo has been shown to be valuable for drug development in order to assess the efficacy of novel therapeutic strategies both in the pre-clinical and clinical setting. Detection of Apoptosing Retinal Cells (DARC) technology is to date the only tool of its kind to have been tested in clinical trials, with other new imaging techniques under investigation in the fields of neuroscience, ophthalmology and drug development. We summarize the transitioning of techniques detecting apoptosis from bench to bedside, along with the future possibilities they encase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zeng ◽  
Jinghua Wang ◽  
Zewei Zhuo ◽  
Yujun Luo ◽  
Weihong Sha ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.


2005 ◽  
Vol 171 (5) ◽  
pp. 835-844 ◽  
Author(s):  
Feng-Xia Liang ◽  
Maarten C. Bosland ◽  
Hongying Huang ◽  
Rok Romih ◽  
Solange Baptiste ◽  
...  

Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia.


Sign in / Sign up

Export Citation Format

Share Document