scholarly journals Static and dynamic failure mechanisms of circular granite under the condition of water-heat cycles

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chun Wang ◽  
Xin-ru Li ◽  
Mei-zhi Xie ◽  
Zu-qiang Xiong ◽  
Cheng Wang ◽  
...  

AbstractBased on the engineering environment where rocks surrounding wellbores in energy storage areas are influenced by high temperature, cool and hot water, thermal stress etc. in the exploitation of hydrothermally geothermal energy, the experimental study on mechanical properties of ring granite under the static and dynamic loads in the water-heat condition was performed. The experimental results showed that when the ring granite was influenced by the inner diameters, heating temperatures, curing temperatures and heat recovery cycle times, the impact load-strain curves were nonlinear. However, the concave stages, platform stages and cliff-like drop stages appeared in the load-strain curves under the static loads. The radical peak loads decreased exponentially with the growth of the damage factors and the dynamic peak loads were far greater than the static peak loads. By analyzing the damage cracks and broken fragments, it was found that under the static and dynamic radical loads, the cracks generated in the ring specimens were tensile cracks and the failure mode was tensile failure. However, the dynamic failure was more aggressive than the static failure. Then, the apparent deformation modulus was defined to describe the deformation characteristics of ring granite before the radical peak loads. And it is found that the variation law of dynamic apparent deformation modulus is more dispersed than the changes of static apparent deformation modulus. Finally, based on the deformation and failure characteristics of ring granite obtained from the tests, the static and dynamic failure criteria considering whether the cracks along the loading direction were generated in the inner ring wall were deduced and verified by the corresponding tests.

Author(s):  
Rajesh P. Nair ◽  
C. Lakshmana Rao

Discrete Element Method (DEM) is an explicit numerical scheme to model the mechanical response of solid and particulate media. In our paper, we are introducing Quadrilateral Discrete Element Method (QDEM) for the simulation of the separation of elements in fixed beam subjected to impact load. QDEM results are compared with other DEM results available in literature. Impact loads include two cases: (a) a half sine wave and (b) a penetrator hitting the fixed beam. Separation criteria used for the discrete elements is maximum principal stress failure criteria. In QDEM, convergence study for the response of fixed beam is obtained using MATLAB platform. Validation of quadrilateral elements in fixed beam is being carried out by comparing the results with empirical formula available in literature for the impact analysis.


Author(s):  
Chai Xianghai ◽  
Wang Zhiqiang ◽  
Tang Zhongbin

Diffusion-bonded titanium hollow warren structures have been successfully used on aircraft engine components, such as fan blade, etc., for which failure behavior under impact load is one of the major considerations during design. Studies show that the welding seam de-bonding is the major failure mechanisms under the impact loads. To effectively simulate the de-bonding, phenomenological effective bond strength needs to be properly defined for both the girder region and the edges. In this paper, the bond strength at the hollow region is calibrated through quasi-static tensile tests, in which the specimens are properly designed to represent the cross-section of the hollow region of a typical warren structure. Then, the strength of the edge region is estimated through an inverse method based on the analysis-test correlation of a hollow panel impact test. Such multi-factor coupled seam failure criteria can provide reasonable accordance with test result in the simulation of impact failure of the hollow structure. This means the model with such failure criteria incorporated can provide a useful reference to the aircraft engine hollow warren structure components design.


Author(s):  
Aleksandr L. Medvedskiy ◽  
Mikhail I. Martirosov ◽  
Anton V. Khomchenko ◽  
Darina V. Dedova

The aim of the work is to study the effect of interlayer defects of the bundle type on the behavior of a rectangular flat three-layer panel with a honeycomb filler under the influence of a dynamic impact load. Methods. The problem was solved numerically using the finite element method in the Simcenter Femap and LS-DYNA (Livermore Software Technology Corp.) software complexes. For this purpose, a geometric model of a panel with a honeycomb placeholder was developed. Based on the geometric model, a finite element model of the panel was created using three-dimensional finite elements. In the software complexes, the finite element model was calculated under specified boundary conditions, then the stress fields and fracture indices in the panel were determined, taking into account and without taking into account damage. Results. The stress fields in the panel are numerically determined with and without defects. The fields of the failure indices of the panel layers under the impact load are investigated using various failure criteria (Puck, Hashin, LaRC03 (Langley Research Center)) of polymer composite materials. The analysis of the influence of a defect on the behavior of a honeycomb panel under the impact load is carried out.


2014 ◽  
Vol 566 ◽  
pp. 34-40
Author(s):  
Michael J. Worswick ◽  
Ryan George ◽  
Alex Bardelcik ◽  
Luke Ten Kortenaar ◽  
Duane Detwiler

The impact modeling of a hot-formed component with tailored mechanical properties is studied to understand the influence of the thermal processing history and how the final properties of the component will affect its impact response. This paper presents a numerical study of the forming and quenching process and subsequent impact simulations. The processing simulations serve to predict the final microstructure and hardness distribution within a lab-scale B-pillar component that is processed using a tool with separate heated and cooled regions. A remapping algorithm is used to translate the results of the forming simulation to the impact simulation. A strain-rate sensitive material model is applied to model the response of these tailored microstructures during impact events. A comparison between a component that is fully hardened and a tailored component with regions of lower strength but increased ductility is presented in this work. Simulations that do not consider the onset of fracture predict superior peak impact load and energy absorption of the fully martensitic component due to its higher overall strength. However, the bainitic regions within the tailored component exhibit much higher ductility. Current work is addressing the introduction of failure criteria into simulations of tailored hot stamped components under impact loading for which the tailored component is expected to demonstrate superior resistance to cracking relative to the fully hardened component.


2001 ◽  
Author(s):  
Shen Rong Wu ◽  
Xiaoming Chen ◽  
Weiran Hu

Abstract This study reviews the impact failure modes of structural components made of materials with low ductility such as aluminum and magnesium. Tensile failure is observed at large stretch area or on the tension side of large bending deformation. Material breakage due to shear may also occur. There are several approaches to simulate the material failure process in explicit finite element software used for crashworthiness analysis. Evaluation of the effective applications of these material models is presented with a finite element simulation of bi-axial loading tests. The forming limit diagram is used to evaluate various failure criteria. Component crash simulations are presented to demonstrate the applications of failure criteria.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


2021 ◽  
Vol 11 (9) ◽  
pp. 3820
Author(s):  
Noelia Llantoy ◽  
Gabriel Zsembinszki ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

With the aim of contributing to achieving the decarbonization of the energy sector, the environmental impact of an innovative system to produce heating and domestic hot water for heating demand-dominated climates is assessed is evaluated. The evaluation is conducted using the life cycle assessment (LCA) methodology and the ReCiPe and IPCC GWP indicators for the manufacturing and operation stages, and comparing the system to a reference one. Results show that the innovative system has a lower overall impact than the reference one. Moreover, a parametric study to evaluate the impact of the refrigerant is carried out, showing that the impact of the overall systems is not affected if the amount of refrigerant or the impact of refrigerant is increased.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amandine Leroy ◽  
Xavier Falourd ◽  
Loïc Foucat ◽  
Valérie Méchin ◽  
Fabienne Guillon ◽  
...  

Abstract Background Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. Results HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β–O–4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in $${T}_{1\rho }^{H}$$ T 1 ρ H , $${T}_{HH}$$ T HH and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5–15 nm pore size range. Conclusion The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.


Sign in / Sign up

Export Citation Format

Share Document