scholarly journals A refined medium to enhance the antimicrobial activity of postbiotic produced by Lactiplantibacillus plantarum RS5

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
May Foong Ooi ◽  
Hooi Ling Foo ◽  
Teck Chwen Loh ◽  
Rosfarizan Mohamad ◽  
Raha Abdul Rahim ◽  
...  

AbstractPostbiotic RS5, produced by Lactiplantibacillus plantarum RS5, has been identified as a promising alternative feed supplement for various livestock. This study aimed to lower the production cost by enhancing the antimicrobial activity of the postbiotic RS5 by improving the culture density of L. plantarum RS5 and reducing the cost of growth medium. A combination of conventional and statistical-based approaches (Fractional Factorial Design and Central Composite Design of Response Surface Methodology) was employed to develop a refined medium for the enhancement of the antimicrobial activity of postbiotic RS5. A refined medium containing 20 g/L of glucose, 27.84 g/L of yeast extract, 5.75 g/L of sodium acetate, 1.12 g/L of Tween 80 and 0.05 g/L of manganese sulphate enhanced the antimicrobial activity of postbiotic RS5 by 108%. The cost of the production medium was reduced by 85% as compared to the commercially available de Man, Rogosa and Sharpe medium that is typically used for Lactobacillus cultivation. Hence, the refined medium has made the postbiotic RS5 more feasible and cost-effective to be adopted as a feed supplement for various livestock industries.

2017 ◽  
Vol 15 (1) ◽  
pp. 293-298
Author(s):  
Pakinaz Y. Khashaba ◽  
Hassan Refat H. Ali ◽  
Mohamed M. El-Wekil

AbstractA simple, rapid, cost-effective, and sensitive TLC-spectrodensitometric method for simultaneous determination of esomeprazole and domperidone was developed and tested in human plasma. Ethyl acetate: methanol: benzene: acetonitrile (5: 4: 8: 3, v/v/v/v) mobile phase was used for separation on TLC plates detected at 286 nm. The linearity ranges were 5-1200 and 2-600 ng/ spot for esomeprazole and domperidone, and limits of detection were 1.73 and 0.59 ng/spot. The effects of four variables affecting Rf were evaluated by fractional factorial design. The benzene volume and saturation time had significant effects.


1981 ◽  
Vol 103 (2) ◽  
pp. 294-307
Author(s):  
C. E. Lowell ◽  
S. M. Sidik ◽  
D. L. Deadmore

The effects of potential impurities, such as Na, K, Mg, Ca, and Cl, in coal-derived liquid fuels on accelerated corrosion of IN-100, U-700, IN-792, and Mar M-509 were investigated using a Mach 0.3 burner rig for times to 200 hr in 1 hr cycles. These impurities were injected in combination as aqueous solutions into the combustor. Other variables were time, temperature, and fuel-to-air ratio. The experimental matrix was a central composite fractional factorial design divided into blocks to allow modification of the design as data was gathered. The extent of corrosion was determined by metal consumption, τ.


2004 ◽  
Vol 50 (12) ◽  
pp. 1033-1040 ◽  
Author(s):  
Keisuke Ikehata ◽  
Michael A Pickard ◽  
Ian D Buchanan ◽  
Daniel W Smith

Optimum culture conditions for the batch production of extracellular peroxidase by Coprinus cinereus UAMH 4103 and Coprinus sp. UAMH 10067 were explored using 2 statistical experimental designs, including 2-level, 7-factor fractional factorial design and 2-factor central composite design. Of the 7 factors examined in the screening study, the concentrations of carbon (glucose) and nitrogen (peptone or casitone) sources showed significant effects on the peroxidase production by Coprinus sp. UAMH 10067. The optimum glucose and peptone concentrations were determined as 2.7% and 0.8% for Coprinus sp. UAMH 10067, and 2.9% and 1.4% for C. cinereus UAMH 4103, respectively. Under the optimized culture condition the maximum peroxidase activity achieved in this study was 34.5 U·mL–1 for Coprinus sp. UAMH 10067 and 68.0 U·mL–1 for C. cinereus UAMH 4103, more than 2-fold higher than the results of previous studies.Key words: Coprinus peroxidase, central composite design, fractional factorial design, production optimization, response surface.


1980 ◽  
Author(s):  
C. E. Lowell ◽  
S. M. Sidik ◽  
D. L. Deadmore

The effects of potential impurities, such as Na, K, Mg, Ca, and Cl, in coal-derived liquid fuels on accelerated corrosion of IN-100, U-700, IN-792, and Mar M-509 were investigated using a Mach 0.3 burner rig for times to 200 hours in one hour cycles. These impurities were injected in combination as aqueous solutions into the combustor. Other variables were time, temperature, and fuel-to-air ratio. The experimental matrix was a central composite fractional factorial design divided into blocks to allow modification of the design as data was gathered. The extent of corrosion was determined by metal consumption, τ.


Author(s):  
SF Wang ◽  
JH Zhang ◽  
ZG Liu ◽  
XW Zhang ◽  
J Hong ◽  
...  

Riveted joints are extensively adopted in designing aircraft structures. Riveting implies a squeezing process of the rivet with large plastic deformations to form the driven rivet head. The driven rivet head dimensions (height H, diameter D) depend on riveting force ( X1), rivet length and diameter tolerance ( X2 and X3), as well as rivet hole tolerance ( X4). Incorrect selection in these parameters could induce the excessive stress concentration that results in initial crack and also results in improper rivet head deformation leading to loose rivet. The present research is conducted on a MS2047AD6-6 rivet and 2.286 mm thick aluminum alloy sheets and mainly focuses on the design of riveting parameters X1, X2, X3, and X4 using the proposed three-step statistical experiment designs including fractional factorial design, steepest ascent design, and central composite design while satisfying the quality requirements for driven rivet head dimensions ( H, D) mentioned in Standard Aircraft Handbook. Fractional factorial design is used to evaluate the impact of riveting parameters X1, X2, X3, and X4 on H and D. Based on the effective ranges of the significant riveting parameters obtained from steepest ascent design, a five-level central composite design is proposed to derive the statistical relations between H, D and the significant riveting parameters, and the statistical models are used to find the feasible region resulting from the combination of the significant riveting parameters while satisfying the quality requirements for H and D. Finally, the feasible ranges of X1, X2, X3, and X4, namely [16,470 N 22,730 N], [−0.1491 mm 0.3891 mm], [−0.0466 mm 0.1216 mm], and [−0.0375 mm 0.2125 mm], are determined from the perspective of adjustable accuracy of X1 and that of the manufacturability for X2, X3, and X4. It implies that any combination of X1, X2, X3, and X4 that falls within this feasible region can result in a good quality riveted joins, namely that the quality requirements for the driven riveting head dimension ( H, D) can be satisfied.


2021 ◽  
Vol 11 (6) ◽  
pp. 81-85
Author(s):  
Swati P Bhavsar

Phenolics are widely distributed in plant kingdom and are therefore, an integral part of the diet, with significant amounts being reported in vegetables, fruits, and beverages. Various phenolic compounds have attracted the attention of food and medical scientists because of their fragrance, aroma, antioxidant, anti-inflammatory properties and ability to combat human diseases. Of these, Ferulic Acid (FA), a hydroxy cinnamic acid (related to trans-cinnamic acid), being natural, is of great demand in the food industry. As a component of lignin, FA is a precursor in the manufacture of other aromatic compounds. In our study, FA was produced using Lactobacillus spp. isolates and standard culture of Lactobacillus plantarum ATCC 8014. FA was extracted and partially characterized using Thin Layer Chromatography (TLC), Absorption maxima (λm) analysis and High Performance Liquid Chromatography (HPLC). Further, optimization of the fermentation medium was done using Factorial Fractional Design (FFD). Preliminary confirmation of the extracted FA was done using TLC, spectral analysis and purity assessed by HPLC. FA could be produced using Lactobacillus sp. and agro industrial waste viz., wheat bran, leading to a cost-effective protocol and product. Further, medium was optimized for the production of FA using FFD and it was observed that medium containing5.75% Wheat bran & 0.18% Tween 80 is optimum for the production of FA. The antimicrobial activity of FA was noteworthy against Aspergillus flavus and E. coli.


2018 ◽  
Vol 11 (5) ◽  
pp. 1232-1239 ◽  
Author(s):  
Kui Li ◽  
Yang Li ◽  
Yuemin Wang ◽  
Junjie Ge ◽  
Changpeng Liu ◽  
...  

PtRu alloy nanoparticles, surface-enriched with Pt nanoclusters and partially-embedded in carbon, act as the cost-effective and promising alternative to commercial Pt/C for electrocatalytic hydrogen evolution.


2017 ◽  
Vol 5 (16) ◽  
pp. 7603-7611 ◽  
Author(s):  
An-Na Cho ◽  
Nallan Chakravarthi ◽  
Kakaraparthi Kranthiraja ◽  
Saripally Sudhaker Reddy ◽  
Hui-Seon Kim ◽  
...  

The cost-effective hole transporting material ACR-TPA based on a 9,9-dimethyl-9,10-dihydroacridine core is synthesized and found to be a promising alternative to spiro-MeOTAD because of its comparable photovoltaic performance.


Sign in / Sign up

Export Citation Format

Share Document