scholarly journals Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haitham Emaish ◽  
Khamael M. Abualnaja ◽  
Essam E. Kandil ◽  
Nader R. Abdelsalam

AbstractFossil fuels are the main energy sources responsible for harmful emissions and global warming. Using biodiesel made from waste deep-frying oil as an alternative fuel source in diesel engines has drawn great attention. This biodiesel is produced using the transesterification process and blends with mineral diesel at Faculty of Agriculture Saba Basha, Alexandria University, Egypt. The turbocharged diesel engine of a Kubota M-90 tractor was tested. The objectives of this work are to test tractor as a source of power in the farm using waste deep-frying oil biodiesel to utilize waste frying oils (WFO) in clean energy production on the farm and determine the best engine loading stages to maximize engine efficiencies for different fuel blends and reduce the environmental impact of gas emissions from tractor diesel engines in the farms. The experiment design was factorial, with two factors, where the first was the engine load (0%, 25%, 50%, 75%, and 100%) and the second was fuel blend (0%, 5%, 20%, and 100% biodiesel), and the effects of loading stages and biodiesel percentage on engine performance indicators of engine speed, power take off torque, power take off power, brake power, brake mean effective pressure, brake thermal efficiency, brake specific fuel consumption, and gas emissions were studied. The experimental results indicated that engine load percentage and fuel blend percentage significantly affected all studied characters, and the best engine loading stages were between 25 and 75% to maximize engine efficiency and minimize the specific fuel consumption and gas emissions. Increasing the biodiesel percentage at all loading stages resulted decreasing in Engine brake power (BP), brake thermal efficiency, Power take-off (PTO) torque, and brake mean effective pressure and increases in brake specific fuel consumption. Increasing the engine load resulted in decreases in O2 emissions and increases in CO2, CO, NO, and SO2 emissions. Increasing the biodiesel percentage in the blended fuel samples resulted in increases in O2 and NO emissions and decreases in CO2, CO, and SO2 emissions. The use of biodiesel with diesel fuel reduces the environmental impact of gas emissions and decreases engine efficiency.

2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1135
Author(s):  
Zhiqing Zhang ◽  
Jiangtao Li ◽  
Jie Tian ◽  
Guangling Xie ◽  
Dongli Tan ◽  
...  

In this paper, a four-stroke engine diesel was employed to investigate the effects of different fuel mixture ratios of diesel and ethanol on engine performance and emission characteristics in terms of cylinder temperature, heat release rate, brake power, brake thermal efficiency, brake specific fuel consumption, and cylinder pressure. The corresponding simulation model of diesel engine was developed by AVL-Fire coupled CHEMKIN code, and an improved chemical kinetics mechanism containing 34 reactions and 19 species was employed to simulate the fuel spray process and combustion process. The simulation model was validated by experimental results under 100% and 50% load conditions and used to simulate the combustion process of diesel engine fueled with pure diesel and diesel–ethanol blends with 10%, 20%, and 30% ethanol by volume, respectively. The results showed that the increase of ethanol content in the blended fuel had a certain negative impact on the performance characteristic of diesel engine and significantly improved the emission characteristic of the engine. With the ethanol proportion in the blended fuel increased to 10%, 20%, and 30%, the brake thermal efficiency of the engine increased by 2.24%, 4.33%, and 6.37% respectively. However, the brake-specific fuel consumption increased by 1.56%, 3.49%, and 5.74% and the power decreased by 1.58%, 3.46%, and 5.54% respectively. In addition, with the ethanol proportion in the blended fuel increased to 10%, 20%, and 30%, the carbon monoxide emission decreased by 34.69%, 47.60%, and 56.58%, and the soot emission decreased by 7.83%, 15.24%, and 22.52% respectively. Finally, based on the combining fuzzy and grey correlation theory, nitrogen oxide emission has the highest correlation with engine power and brake-specific fuel consumption. The values reach 0.9103 and 0.8945 respectively. It shows that nitrogen oxide emission and cylinder pressure have a significant relationship on engine power and brake-specific fuel consumption.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Murugan Kuppusamy ◽  
Thirumalai Ramanathan ◽  
Udhayakumar Krishnavel ◽  
Seenivasan Murugesan

The effect of thermal-barrier coatings (TBCs) reduces fuel consumption, effectively improving the engine efficiency. This research focused on a TBC with a thickness of 300 µm insulating the combustion chamber of a direct ignition (DI) engine. The piston crown, inlet and exhaust-valve head were coated using air-plasma-spray coating. Ceramic powder materials such as molybdenum (Mo) and aluminum oxide titanium dioxide (Al2O3-TiO2) were used. A performance test of the engine with the coated combustion chamber was carried out to investigate the brake power, brake thermal efficiency, volumetric efficiency, brake specific fuel consumption and air-fuel ratio. Also, an emission-characteristic test was carried out to investigate the emissions of unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NO, NO2, NO3) and smoke opacity (SO). The results reveal that the brake thermal efficiency and brake specific fuel consumption show significant increases because of these coating materials. The effect of the Al2O3-TiO2 coating significantly reduces the HC and CO engine emissions.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Jue Li ◽  
Timothy J. Jacobs ◽  
Tushar Bera ◽  
Michael A. Parkes

This study investigates the effects of engine bore size on diesel engine performance and combustion characteristics, including in-cylinder pressure, ignition delay, burn duration, and fuel conversion efficiency, using experiments between two diesel engines of different bore sizes. This study is part of a larger effort to discover how fuel property effects on combustion, engine efficiency, and emissions may change for differently sized engines. For this specific study, which is centered only on diagnosing the role of engine bore size on engine efficiency for a typical fuel, the engine and combustion characteristics are investigated at various injection timings between two differently sized engines. The two engines are nearly identical, except bore size, stroke length, and consequently displacement. Although most of this diagnosis is done with experimental results, a one-dimensional model is also used to calculate turbulence intensities with respect to geometric factors; these results help to explain observed differences in heat transfer characteristics of the two engines. The results are compared at the same brake mean effective pressure (BMEP) and show that engine bore size has a significant impact on the indicated efficiency. It is found that the larger bore engine has a higher indicated efficiency than the smaller displaced engine. Although the larger engine has higher turbulence intensities, longer burn durations, and higher exhaust temperature, the lower surface area to volume ratio and lower reaction temperature leads to lower heat losses to the cylinder walls. The difference in the heat loss to the cylinder walls between the two engines is found to increase with increasing engine load. In addition, due to the smaller volume-normalized friction loss, the larger sized engine also has higher mechanical efficiency. In the net, since the brake efficiency is a function of indicated efficiency and mechanical efficiency, the larger sized engine has higher brake efficiency with the difference in brake efficiency between the two engines increasing with increasing engine load. In the interest of efficiency, larger bore designs for a given displacement (i.e., shorter strokes or few number of cylinders) could be a means for future efficiency gains.


Author(s):  
P.S. Kumar ◽  
S.A. Kannan ◽  
A. Kumar ◽  
K.A.V. Geethan

In this study, for the first time analysis of a low heat rejection engine was carried out along with the addition of oxidation inhibitors. If the combustion chamber components of the engine such as piston, cylinder head, and inlet and outlet valves are insulated with a thermal barrier material, then the engine will be referred as low heat rejection engine. In this study yttria stabilized zirconia was coated on the combustion chamber components for a thickness of about 150 microns. Then the analysis of performance parameters such as brake thermal efficiency and specific fuel consumption and emission characteristics such as emission of carbon monoxide, hydrocarbon and nitrogen oxide was carried out in single cylinder four stroke diesel engine with electrical loading using diesel and pongamia methyl ester as the fuels. The major problem associated with the usage of biodiesels and low heat rejection engine is the increased NOX emission than the normal engine operated with the diesel. This problem has been overcome by the usage of oxidation inhibitors such as ethyl hexyl nitrate (EHN), tert-butyl hydroquinone (TBHQ). The results showed that addition of oxidation inhibitors leads to increase in brake thermal efficiency, reduced specific fuel consumption and reduced NOX emission.


2014 ◽  
Vol 490-491 ◽  
pp. 987-991
Author(s):  
Mustafa Kaan Baltacioğlu ◽  
Kadi̇r Aydin ◽  
Ergül Yaşar ◽  
Hüseyi̇n Turan Arat ◽  
Çağlar Conker ◽  
...  

In this study, effect of anisole additive into the diesel fuel on performance and emission parameters of diesel engines was investigated. Instead of structural changes which are more difficult and expensive, development of fuel technologies is preferred to provide reduction on exhaust gas emissions which are harmful to environment and human health. Therefore, in this experimental study, anisole was used as additive into diesel fuel with the volumetric ratio of 1,5%, 3% and 5%. The performance characteristics and exhaust emissions of a four cylinder, four stroke, naturally aspirated, water cooled, direct injection compression ignition engine fueled with modified fuels were analyzed. Engine was subjected constant speed, full load conditions during tests. Engine power, torque, specific fuel consumption, carbon monoxide, nitrogen oxide and carbon dioxide emissions were measured and results were evaluated. Changes in performance parameters were negligible for all ratios of modified fuels except specific fuel consumption. Finally, while carbon monoxide gas emissions were increased with anisole additive, carbon dioxide and nitrogen oxide gas emissions were decreased.


2012 ◽  
Vol 602-604 ◽  
pp. 1054-1058
Author(s):  
Karoon Fangsuwannarak ◽  
Kittichai Triratanasirichai

This study presents the use of bio-solution and nano-Titanium dioxide (TiO2) based additives for dosing in diesel and palm biodiesel (B5). The aim of this work is to enhance the performance of a direct injection (DI) engine and to simultaneously reduce the exhaust gas emissions. The basic properties such as kinematic viscosity, specific gravity, flash point, fire point, and carbon residue of the test fuels were measured and accepted in ASTM standards. Overall, diesel-bio-solution and diesel-TiO2 blends show the lower break specific fuel consumption by 13% and 10%, respectively and the lower exhaust gas emissions, as compared with diesel. B5-bio-solution blend provides the break specific fuel consumption decreased by 1.68%, while exhaust emissions were effectively increased in comparison with B5 fuel.


2015 ◽  
Vol 162 (3) ◽  
pp. 13-18
Author(s):  
Gvidonas Labeckas ◽  
Irena Kanapkienė

The article presents experimental test results of a DI single-cylinder, air-cooled diesel engine FL 511 operating with the normal (class 2) diesel fuel (DF), rapeseed oil (RO) and its 10%, 20% and 30% (v/v) blends with aviation-turbine fuel JP-8 (NATO code F-34). The purpose of the research was to analyse the effects of using various rapeseed oil and jet fuel RO90, RO80 and RO70 blends on brake specific fuel consumption, brake thermal efficiency, emissions and smoke of the exhaust. The test results of engine operation with various rapeseed oil and jet fuel blends compared with the respective parameters obtained when operating with neat rapeseed oil and those a straight diesel develops at full (100%) engine load and maximum brake torque speed of 2000 rpm. The research results showed that jet fuel added to rapeseed oil allows to decrease the value of kinematic viscosity making such blends suitable for the diesel engines. Using of rapeseed oil and jet fuel blends proved themselves as an effective measure to maintain fuel-efficient performance of a DI diesel engine. The brake specific fuel consumption decreased by about 6.1% (313.4 g/kW·h) and brake thermal efficiency increase by nearly 1.0% (0.296) compared with the respective values a fully (100%) loaded engine fuelled with pure RO at the same test conditions. The maximum NOx emission was up to 13.7% higher, but the CO emissions and smoke opacity of the exhaust 50.0% and 3.4% lower, respectively, for the engine powered with biofuel blend RO70 compared with those values produced by the combustion of neat rapeseed oil at full (100%) engine load and speed of 2000 rpm.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


2014 ◽  
Vol 984-985 ◽  
pp. 950-956
Author(s):  
S. Arumugam ◽  
N. Vasudevan ◽  
P. Saravanan ◽  
K. Pitchandi

The experimental work investigates performance, combustion and emission analysis for various combustion chamber geometry such as combustion, brake thermal efficiency, specific fuel consumption, and emission characteristics. The various combustion chamber namely Spherical chamber (SC), Toroidal chamber (TC), Re-entrant chamber (RC) were fitted in a 4.4 kW single cylinder air cooled Compression ignition (CI) engine and tests were conducted with standard diesel. The investigated of the combustion chamber geometry characteristics on combustion, performance and emissions. This investigation shows brake thermal efficiency for Re-entrant chamber and Toroidal chamber is slightly higher than Spherical chamber. And lower specific fuel consumption of Toroidal chamber, Re-entrant chamber than that of Spherical chamber. The enhancement in reduction of carbon monoxide, hydrocarbon is recorded for Re-entrant chamber compared to the Toroidal chamber and Spherical chamber. Oxides of nitrogen are reduced for Re-entrant chamber and Toroidal chamber than that of Spherical chamber. Combustion characteristics improved for Re-entrant chamber compared to Spherical chamber. The cylinder pressure for Re-entrant chamber and Toroidal chamber is higher than that of Spherical chamber. Also obtained maximum heat release rate for Re-entrant chamber than Toroidal chamber and Spherical chamber.


Sign in / Sign up

Export Citation Format

Share Document