scholarly journals Multiple DNA marker-assisted diversity analysis of Indian mango (Mangifera indica L.) populations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ram Chandra Jena ◽  
Pradeep Kumar Chand

AbstractArbitrary (65 RAPD, 25 ISSR, 23 DAMD), gene-targeted (22 SCoT, 33 CBDP) and co-dominant sequence specific (40 SSR) markers were used individually, or in combinations, to examine the genetic variability within and among 70 selected Indian mango genotypes based on geographic origin (East India, West India, North India, South India) and fruit status (Selection, Hybrid, Landrace). The highest genetic variability was demonstrated by the East Indian populations, followed by those from South India, West India, and North India, when measured in terms of Na, Ne, H, I, PB%, Ht and Hs. Interestingly, the local genotypes of Odisha, which forms a part of East Indian populations, showed the highest diversity compared to hybrid or selection groups, suggesting that the indigenous genotypes hold a greater potential for exploiting the unique and favourable alleles. The maximum genetic variability was detected in geographical/fruit status populations with SSRs (Na—1.76/1.88, Ne—1.48/1.51, H—0.28/0.30, I—0.41/0.45, PB%—76.1/86.9, Ht—0.31/0.32 and Hs—0.28/0.30), followed by CBDPs and SCoTs, reflecting their preeminence for examining the level of genetic polymorphism and diversity. Outcome of AMOVA based analyses as well as low-to-moderate coefficient of genetic differentiation (Gst) and high gene flow (Nm) indicated a greater amount of intra-population genetic variation compared to heterogeneity at inter-population level. Information generated through this investigation could facilitate conservation and further exploitation of mango germplasm including genetic improvement through breeding.

BMC Genetics ◽  
2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Ranajit Das ◽  
Vladimir A. Ivanisenko ◽  
Anastasia A. Anashkina ◽  
Priyanka Upadhyai

Abstract Background The population structure of the Indian subcontinent is a tapestry of extraordinary diversity characterized by the amalgamation of autochthonous and immigrant ancestries and rigid enforcement of sociocultural stratification. Here we investigated the genetic origin and population history of the Kumhars, a group of people who inhabit large parts of northern India. We compared 27 previously published Kumhar SNP genotype data sampled from Uttar Pradesh in north India to various modern day and ancient populations. Results Various approaches such as Principal Component Analysis (PCA), Admixture, TreeMix concurred that Kumhars have high ASI ancestry, minimal Steppe component and high genomic proximity to the Kurchas, a small and relatively little-known population found ~ 2500 km away in Kerala, south India. Given the same, biogeographical mapping using Geographic Population Structure (GPS) assigned most Kumhar samples in areas neighboring to those where Kurchas are found in south India. Conclusions We hypothesize that the significant genomic similarity between two apparently distinct modern-day Indian populations that inhabit well separated geographical areas with no known overlapping history or links, likely alludes to their common origin during or post the decline of the Indus Valley Civilization (estimated by ALDER). Thereafter, while they dispersed towards opposite ends of the Indian subcontinent, their genomic integrity and likeness remained preserved due to endogamous social practices. Our findings illuminate the genomic history of two Indian populations, allowing a glimpse into one or few of numerous of human migrations that likely occurred across the Indian subcontinent and contributed to shape its varied and vibrant evolutionary past.


Zootaxa ◽  
2012 ◽  
Vol 3323 (1) ◽  
pp. 27 ◽  
Author(s):  
PAVEL SROKA ◽  
ALEXANDER V. MARTYNOV ◽  
ROMAN J. GODUNKO

Specimens of Baetis (Rhodobaetis) braaschi Zimmermann, 1980 from the three distant geographic regions (Crimean Pen-insula, Eastern Ukraine and Caucasus) are investigated and compared using a methodological approach combining mor-phological and molecular (partial mtDNA COI sequences) data. Intraspecific variability in several morphologicalcharacters is recognized and described, whereas COI sequences are found to be very uniform. The amount and distributionof the changes of COI sequences do not follow the pattern of morphological variability and/or geographic origin of thespecimens. This indicates that analysis of the changes in the COI sequence can contradict the pattern of morphologicalcharacters commonly used for the discrimination of the individual Rhodobaetis species. As a basis for the future taxonom-ic changes concerning subgenus Rhodobaetis, it is advised (where possible) to critically evaluate both molecular and morphological data.


2013 ◽  
Vol 17 (11) ◽  
pp. e981-e987 ◽  
Author(s):  
George M. Varghese ◽  
Jeshina Janardhanan ◽  
Paul Trowbridge ◽  
John V. Peter ◽  
John A.J. Prakash ◽  
...  

2019 ◽  
Vol 286 (1895) ◽  
pp. 20182533 ◽  
Author(s):  
Y. Bernaldo de Quirós ◽  
A. Fernandez ◽  
R. W. Baird ◽  
R. L. Brownell ◽  
N. Aguilar de Soto ◽  
...  

Mass stranding events (MSEs) of beaked whales (BWs) were extremely rare prior to the 1960s but increased markedly after the development of naval mid-frequency active sonar (MFAS). The temporal and spatial associations between atypical BW MSEs and naval exercises were first observed in the Canary Islands, Spain, in the mid-1980s. Further research on BWs stranded in association with naval exercises demonstrated pathological findings consistent with decompression sickness (DCS). A 2004 ban on MFASs around the Canary Islands successfully prevented additional BW MSEs in the region, but atypical MSEs have continued in other places of the world, especially in the Mediterranean Sea, with examined individuals showing DCS. A workshop held in Fuerteventura, Canary Islands, in September 2017 reviewed current knowledge on BW atypical MSEs associated with MFAS. Our review suggests that the effects of MFAS on BWs vary among individuals or populations, and predisposing factors may contribute to individual outcomes. Spatial management specific to BW habitat, such as the MFAS ban in the Canary Islands, has proven to be an effective mitigation tool and mitigation measures should be established in other areas taking into consideration known population-level information.


2004 ◽  
Vol 68 (3) ◽  
pp. 538-559 ◽  
Author(s):  
Byron F. Brehm-Stecher ◽  
Eric A. Johnson

SUMMARY The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly “clonal” populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the “averaging” effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.


2004 ◽  
Vol 50 (5) ◽  
pp. 313-322 ◽  
Author(s):  
Subhash Chandra Verma ◽  
Soumitra Paul Chowdhury ◽  
Anil Kumar Tripathi

Bacterial symbionts present in the indeterminate-type nitrogen (N)-fixing nodules of Mimosa pudica grown in North and South India showed maximum similarity to Ralstonia taiwanensis on the basis of carbon-source utilization patterns and 16S rDNA sequence. Isolates from the nodules of M. pudica from North India and South India showed identical ARDRA (Amplified Ribosomal DNA Restriction Analysis) patterns with Sau3AI and RsaI, but AluI revealed dimorphy between the North Indian and South Indian isolates. Alignment of 16S rDNA sequences revealed similarity of North Indian isolates with an R. taiwanensis strain isolated from M. pudica in Taiwan, whereas South Indian isolates showed closer relatedness with the isolates from Mimosa diplotricha. Alignment of nifH sequences from both North Indian and South Indian isolates with that of the related isolates revealed their closer affinity to α-rhizobia, suggesting that nif genes in the β-rhizobia might have been acquired from α-rhizobia via lateral transfer during co-occupancy of nodules by α-rhizobia and progenitors of R. taiwanensis, members of the β-subclass of Proteobacteria. Immunological cross-reaction of the bacteroid preparation of M. pudica nodules showed strong a positive signal with anti-dinitrogenase reductase antibody, whereas a weak positive cross-reaction was observed with free-living R. taiwanensis grown microaerobically in minimal medium with and without NH4Cl. In spite of the expression of dinitrogenase reductase under free-living conditions, acetylene reduction was not observed under N-free conditions even after prolonged incubation.Key words: symbiotic nitrogen fixation, Mimosa pudica, rhizobia, phylogeny, 16S rDNA, nifH, Ralstonia taiwanensis.


Sign in / Sign up

Export Citation Format

Share Document