biocide resistance
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 27)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Esmael Shouri Milani ◽  
Alka Hasani ◽  
Mojtaba Varschochi ◽  
Javid Sadeghi ◽  
Mohammad Yosef Memar ◽  
...  

2021 ◽  
Author(s):  
Farzad Khademi ◽  
Shahram Habibzadeh ◽  
Hamid Vaez ◽  
Mohsen Arzanlou ◽  
Somayeh Safarirad ◽  
...  

Abstract Background: Biocides are frequently used as preservative, disinfectant and sterilizer against many microorganisms in hospitals, industry and home. However, the resistance rate of Pseudomonas aeruginosa (P. aeruginosa) strains to biocides is increasing. The aim of this study was to evaluate the antimicrobial activity of four frequently used biocides against P. aeruginosa and to determine the prevalence of genes involved in biocide resistance. Methods: A total of 76 clinical isolates of P. aeruginosa strains were used in the present study. The minimum inhibitory concentrations (MICs) of four biocides, i.e. chlorhexidine digluconate, benzalkonium chloride, triclosan and formaldehyde, against P. aeruginosa strains were determined using agar dilution method. In addition, the prevalence of biocide resistance genes was determined using the polymerase chain reaction (PCR) method.Results: In the present study, the highest MIC90 value was observed for benzalkonium chloride (MIC90=1024 μg/mL), followed by formaldehyde (MIC90=512 μg/mL), triclosan (MIC90=512 μg/mL) and chlorhexidine digluconate (MIC90=64 μg/mL). Furthermore, the prevalence of qacEΔ1, qacE, qacG, fabV, cepA and fabI genes were 73.7% (n=56), 26.3% (n=20), 11.8% (n=9), 84.2% (n=64), 81.5% (n=62) and 0% (n=0), respectively. A significant association was observed between the presence of biocide resistance genes and MICs (p<0.05). Furthermore, there was no significant association between the presence of biocide resistance genes and antibiotic resistance (p>0.05), except for levofloxacin and norfloxacin antibiotics and qacE and qacG genes (p<0.05). Conclusion: Our results revealed that chlorhexidine digluconate is the most effective biocide against P. aeruginosa isolates in Ardabil hospitals. However, we recommend continuous monitoring of the antimicrobial activity of biocides and the prevalence of biocide-associated resistance genes for a better prevention of microorganism dissemination and infection control in hospitals.


Author(s):  
E.S. Milani ◽  
A. Hasani ◽  
M. Varschochi ◽  
J. Sadeghi ◽  
M.Y. Memar ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Vinicius C. N. de Moura ◽  
Deepshikha Verma ◽  
Isobel Everall ◽  
Karen P. Brown ◽  
Juan M. Belardinelli ◽  
...  

Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1849
Author(s):  
Norhan K. Abd El-Aziz ◽  
Ahmed M. Ammar ◽  
Hend M. El Damaty ◽  
Rehab A. Abd Elkader ◽  
Hosam A. Saad ◽  
...  

Mastitis remains a serious problem for dairy animals. The misappropriation of antimicrobial agents helps accelerate resistance, which poses a serious challenge in controlling environmental S. uberis infection. Here, we study the virulence attributes, antimicrobial and biocide resistance, and epidemiological typing of S. uberis recovered from bovine clinical mastitis in dairy farms of diverse hygienic interventions in Egypt. The overall S. uberis infection rate was 20.59%; all were multidrug-resistant (MDR). The sua gene was the most frequent virulence gene (42.02%), followed by pauA (40.57%), cfu (21.73%), skc (20.28%), and opp (11.59%). The erm(B) gene served as the predominant antimicrobial-resistant gene (75.36%), followed by fexA (52.63%) and tet(M), blaZ, and aac(6′)aph(2″) genes (46.38% each). Of note, 79.71%, 78.26%, and 18.84% of S. uberis isolates harbored qacED1, qacC/D, and qacA/B genes, respectively. All analyzed isolates were S. uberis type I by their unique RFLP–PCR pattern. In conclusion, the sustained presence of pauA and sua genes throughout the investigated farms contributes to a better understanding of the bacterium’s pathogenicity. Furthermore, MDR coupled with the existence of biocide resistance genes indicates the importance of S. uberis surveillance and the prudent use of antimicrobials in veterinary clinical medicine to avoid the dissemination of antimicrobial resistance.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Shamshul Ansari ◽  
John P Hays ◽  
Andrew Kemp ◽  
Raymond Okechukwu ◽  
Jayaseelan Murugaiyan ◽  
...  

Abstract The COVID-19 pandemic presents a serious public health challenge in all countries. However, repercussions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on future global health are still being investigated, including the pandemic’s potential effect on the emergence and spread of global antimicrobial resistance (AMR). Critically ill COVID-19 patients may develop severe complications, which may predispose patients to infection with nosocomial bacterial and/or fungal pathogens, requiring the extensive use of antibiotics. However, antibiotics may also be inappropriately used in milder cases of COVID-19 infection. Further, concerns such as increased biocide use, antimicrobial stewardship/infection control, AMR awareness, the need for diagnostics (including rapid and point-of-care diagnostics) and the usefulness of vaccination could all be components shaping the influence of the COVID-19 pandemic. In this publication, the authors present a brief overview of the COVID-19 pandemic and associated issues that could influence the pandemic’s effect on global AMR.


2021 ◽  
Author(s):  
Hanna Castro ◽  
Francois Douillard ◽  
Hannu Korkeala ◽  
Miia Lindström

Listeria monocytogenes is a food-borne pathogen and a resilient environmental saprophyte. Dairy farms are a reservoir of L. monocytogenes and strains can persist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes isolates to investigate the persistence and mobile genetic elements of Listeria inhabiting dairy farms. We found that prophages and other mobile elements were significantly more numerous among persistent than sporadically occurring strains. We identified a remarkable diversity of mobile elements among farm isolates, including a novel group of plasmids infecting hypervirulent subtypes of L. monocytogenes and occasionally carrying biocide resistance determinants bcrABC or qacH. Resistance genes against bacitracin, arsenic and cadmium were significantly more prevalent among persistent than sporadic strains. Several of the mobile elements in Listeria were identical to the mobile elements of Enterococci, indicative of recent transfer between these genera. Finally, we demonstrated that the CRISPR-cas IIa system and a type II restriction-modification system were negatively associated with persistence on farms. Our findings suggest that mobile elements support the persistence of L. monocytogenes on dairy farms and that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile elements harbouring resistance genes against antimicrobials, biocides, and heavy metals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beatriz Merchel Piovesan Pereira ◽  
Xiaokang Wang ◽  
Ilias Tagkopoulos

Biocide use is essential and ubiquitous, exposing microbes to sub-inhibitory concentrations of antiseptics, disinfectants, and preservatives. This can lead to the emergence of biocide resistance, and more importantly, potential cross-resistance to antibiotics, although the degree, frequency, and mechanisms that give rise to this phenomenon are still unclear. Here, we systematically performed adaptive laboratory evolution of the gut bacteria Escherichia coli in the presence of sub-inhibitory, constant concentrations of ten widespread biocides. Our results show that 17 out of 40 evolved strains (43%) also decreased the susceptibility to medically relevant antibiotics. Through whole-genome sequencing, we identified mutations related to multidrug efflux proteins (mdfA and acrR), porins (envZ and ompR), and RNA polymerase (rpoA and rpoBC), as mechanisms behind the resulting (cross)resistance. We also report an association of several genes (yeaW, pyrE, yqhC, aes, pgpA, and yeeP-isrC) and specific mutations that induce cross-resistance, verified through mutation repairs. A greater capacity for biofilm formation with respect to the parent strain was also a common feature in 11 out of 17 (65%) cross-resistant strains. Evolution in the biocides chlorophene, benzalkonium chloride, glutaraldehyde, and chlorhexidine had the most impact in antibiotic susceptibility, while hydrogen peroxide and povidone-iodine the least. No cross-resistance to antibiotics was observed for isopropanol, ethanol, sodium hypochlorite, and peracetic acid. This work reinforces the link between exposure to biocides and the potential for cross-resistance to antibiotics, presents evidence on the underlying mechanisms of action, and provides a prioritized list of biocides that are of greater concern for public safety from the perspective of antibiotic resistance.Significance StatementBacterial resistance and decreased susceptibility to antimicrobials is of utmost concern. There is evidence that improper biocide (antiseptic and disinfectant) use and discard may select for bacteria cross-resistant to antibiotics. Understanding the cross-resistance emergence and the risks associated with each of those chemicals is relevant for proper applications and recommendations. Our work establishes that not all biocides are equal when it comes to their risk of inducing antibiotic resistance; it provides evidence on the mechanisms of cross-resistance and a risk assessment of the biocides concerning antibiotic resistance under residual sub-inhibitory concentrations.


Sign in / Sign up

Export Citation Format

Share Document