scholarly journals Investigating the utility of VR for spatial understanding in surgical planning: evaluation of head-mounted to desktop display

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georges Hattab ◽  
Adamantini Hatzipanayioti ◽  
Anna Klimova ◽  
Micha Pfeiffer ◽  
Peter Klausing ◽  
...  

AbstractRecent technological advances have made Virtual Reality (VR) attractive in both research and real world applications such as training, rehabilitation, and gaming. Although these other fields benefited from VR technology, it remains unclear whether VR contributes to better spatial understanding and training in the context of surgical planning. In this study, we evaluated the use of VR by comparing the recall of spatial information in two learning conditions: a head-mounted display (HMD) and a desktop screen (DT). Specifically, we explored (a) a scene understanding and then (b) a direction estimation task using two 3D models (i.e., a liver and a pyramid). In the scene understanding task, participants had to navigate the rendered the 3D models by means of rotation, zoom and transparency in order to substantially identify the spatial relationships among its internal objects. In the subsequent direction estimation task, participants had to point at a previously identified target object, i.e., internal sphere, on a materialized 3D-printed version of the model using a tracked pointing tool. Results showed that the learning condition (HMD or DT) did not influence participants’ memory and confidence ratings of the models. In contrast, the model type, that is, whether the model to be recalled was a liver or a pyramid significantly affected participants’ memory about the internal structure of the model. Furthermore, localizing the internal position of the target sphere was also unaffected by participants’ previous experience of the model via HMD or DT. Overall, results provide novel insights on the use of VR in a surgical planning scenario and have paramount implications in medical learning by shedding light on the mental model we make to recall spatial structures.

2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Author(s):  
Denis Bienroth ◽  
Hieu T. Nim ◽  
Dimitar Garkov ◽  
Karsten Klein ◽  
Sabrina Jaeger-Honz ◽  
...  

AbstractSpatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information. Upon data acquisition, one major hurdle is the subsequent interpretation and visualization of the datasets acquired. To address this challenge, VR-Cardiomicsis presented, which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets. By implementing the system in two separate immersive environments, fish tank virtual reality (FTVR) and head-mounted display virtual reality (HMD-VR), biologists can interact with the data in novel ways not previously possible, such as visually exploring the gene expression patterns of an organ, and comparing genes based on their 3D expression profiles. Further, a biologist-driven use-case is presented, in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Rakesh Malhotra ◽  
Terry McNeill ◽  
Carrie Francis ◽  
Tim Mulrooney

<p><strong>Abstract.</strong> North Carolina Central University is committed to student education and training in cartography and geospatial sciences. This paper demonstrates the importance of applying cartographic principles to train students to convert historical deed records into geospatial data. Students were required to take text information from the 1960s and input this information it into a spatial database. The historical information was recorded on typed deeds in COGO (direction-distance) and the historic coordinate system of 1927 in the 1960s. Students applied cartographic principles that were used to identify contextual and spatial variations and anomalies to flag areas and records that didn’t meet project specifications and to trouble shoot conflicting information.</p><p>This paper demonstrates the usefulness of using cartography as a tool to educate students in allied aspects of geospatial sciences such as creating and managing spatial data. For example, students used tools such as markers and color coding to identify areas of overlap and areas of mismatched records (Figure 1). The authors found that using cartography helped enhance the spatial understanding of the project for students.</p><p>Education is the foundation of projects at North Carolina Central University and cartography has demonstrated appeal at the university level. Various geospatial aspects such as datums and projections, overlays, gaps, overlaps, and converting written information to spatial (geometric) information lend themselves well to cartographic principles. Cartography is an essential element that supports learning and teaching of spatial information as demonstrated by this project. Students were in a better position to understand and detect spatial anomalies with help from cartography than they were without using cartography and relying solely of written information. This enhanced their understanding and use of spatial data.</p>


Author(s):  
Taku Sugiyama ◽  
Tod Clapp ◽  
Jordan Nelson ◽  
Chad Eitel ◽  
Hiroaki Motegi ◽  
...  

Abstract BACKGROUND Adequate surgical planning includes a precise understanding of patient-specific anatomy and is a necessity for neurosurgeons. Although the use of virtual reality (VR) technology is emerging in surgical planning and education, few studies have examined the effectiveness of immersive VR during surgical planning using a modern head-mounted display. OBJECTIVE To investigate if and how immersive VR aids presurgical discussions of cerebrovascular surgery. METHODS A multiuser immersive VR system, BananaVisionTM, was developed and used during presurgical discussions in a prospective patient cohort undergoing cerebrovascular surgery. A questionnaire/interview was administered to multiple surgeons after the surgeries to evaluate the effectiveness of the VR system compared to conventional imaging modalities. An objective assessment of the surgeon's knowledge of patient-specific anatomy was also conducted by rating surgeons’ hand-drawn presurgical illustrations. RESULTS The VR session effectively enhanced surgeons’ understanding of patient-specific anatomy in the majority of cases (83.3%). An objective assessment of surgeons’ presurgical illustrations was consistent with this result. The VR session also effectively improved the decision-making process regarding minor surgical techniques in 61.1% of cases and even aided surgeons in making critical surgical decisions about cases involving complex and challenging anatomy. The utility of the VR system was rated significantly higher by trainees than by experts. CONCLUSION Although rated as more useful by trainees than by experts, immersive 3D VR modeling increased surgeons’ understanding of patient-specific anatomy and improved surgical strategy in certain cases involving challenging anatomy.


2013 ◽  
Vol 421 ◽  
pp. 523-527
Author(s):  
Lei Ling ◽  
Pan Chen ◽  
Li Ping

This paper gave an example for the design of automatic image segmentation system by using deep staining of blood cell image. The paper also described how to auto-locate the target position, and how to collect training samples with large entropy further. The spatial information of target object also contained valid information, so this paper put forward to use the relative distance between the inner points and the centre of a circle as a feature of a training sample to work together with the RGB features. And for the segmentation image can be applied to the later medical diagnosis conveniently, the Gauss process classifier had been used in medical image segmentation firstly because of its clear probabilistic interpretation. Compared with SVM, GP is better in this system.


2019 ◽  
Vol 11 (13) ◽  
pp. 1550 ◽  
Author(s):  
Tobias Koch ◽  
Marco Körner ◽  
Friedrich Fraundorfer

Small-scaled unmanned aerial vehicles (UAVs) emerge as ideal image acquisition platforms due to their high maneuverability even in complex and tightly built environments. The acquired images can be utilized to generate high-quality 3D models using current multi-view stereo approaches. However, the quality of the resulting 3D model highly depends on the preceding flight plan which still requires human expert knowledge, especially in complex urban and hazardous environments. In terms of safe flight plans, practical considerations often define prohibited and restricted airspaces to be accessed with the vehicle. We propose a 3D UAV path planning framework designed for detailed and complete small-scaled 3D reconstructions considering the semantic properties of the environment allowing for user-specified restrictions on the airspace. The generated trajectories account for the desired model resolution and the demands on a successful photogrammetric reconstruction. We exploit semantics from an initial flight to extract the target object and to define restricted and prohibited airspaces which have to be avoided during the path planning process to ensure a safe and short UAV path, while still aiming to maximize the object reconstruction quality. The path planning problem is formulated as an orienteering problem and solved via discrete optimization exploiting submodularity and photogrammetrical relevant heuristics. An evaluation of our method on a customized synthetic scene and on outdoor experiments suggests the real-world capability of our methodology by providing feasible, short and safe flight plans for the generation of detailed 3D reconstruction models.


2018 ◽  
Author(s):  
Oliver Müller

This thesis deals with monocular object tracking from video sequences. The goal is to improve tracking of previously unseen non-rigid objects under severe articulations without relying on prior information such as detailed 3D models and without expensive offline training with manual annotations. The proposed framework tracks highly articulated objects by decomposing the target object into small parts and apply online tracking. Drift, which is a fundamental problem of online trackers, is reduced by incorporating image segmentation cues and by using a novel global consistency prior. Joint tracking and segmentation is formulated as a high-order probabilistic graphical model over continuous state variables. A novel inference method is proposed, called S-PBP, combining slice sampling and particle belief propagation. It is shown that slice sampling leads to fast convergence and does not rely on hyper-parameter tuning as opposed to competing approaches based on Metropolis-Hastings or heuristi...


2020 ◽  
Author(s):  
Efstratios Karantanellis ◽  
Vassilios Marinos ◽  
Emmanouel Vassilakis

&lt;p&gt;Geological failures from massive rockfall failures to small landslides of few cubic meters are a major geological hazard in many parts of the world. Based on the latest developments, close-range photogrammetry and individually UAV photogrammetry and Light Detection and Ranging systems have become indispensable tools for geo-experts in order to provide ultra high-resolution 3D models of the failure site. TLS suffers from the fact that is sometimes tricky to capture the holistic area of interest from the ground, while some areas may often be obscured by vegetation or negative inclinations. The science of photogrammetry has long been used to accurately detect and characterize landslide and rockfall failures. Due to the continuously increasing spatial resolution capability of new generation sensors, traditional pixel-based approaches are not capable to cope with the level of detail resulted from those sensors. Mostly, landslides present complex and dynamic geomorphological features with great heterogeneity in their spatial, spectral and contextual properties dependent on the specific failure mechanism. In the current study, an object-based 3D approach for the automated detection of landslide and rockfall hazard is presented based on detailed topographic photogrammetric point clouds and 3D analysis. Recent trends show that close photogrammetry will play a vital role on the geological and engineering geological assessments concerning geo-failures. The results show that object-based approach is closer to human interception due to integration of contextual and semantic, spectral and spatial information rather than translating pixel&amp;#8217;s spectral information solely. The current procedure provides a detailed objective quantification of landslide characteristics and automated semantic landslide modelling of the case site.&lt;/p&gt;


2008 ◽  
Vol 187 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Massimiliano Conson ◽  
Fausta Cinque ◽  
Anna Maria Barbarulo ◽  
Luigi Trojano

2020 ◽  
Author(s):  
Crew Joseph Weunski ◽  
Aydan Hanlon ◽  
Sara Al-Nimer ◽  
Jeffrey Yanof ◽  
Shazam Hussain

Abstract The purpose of this study was to develop and demonstrate a novel imaging platform that post-processes volumetric imaging data (e.g. Computed Tomography (CT) or Magnetic Resonance angiography) to provide holographic visualization for pre-procedural treatment planning of a morphologically complex brain aneurysm. Digital CT images were segmented, using the Materialise Mimics software, into three-dimensional digital models that were imported into a prototype application for the Microsoft HoloLens. Feedback from testing the prototype indicated potential for augmented reality to assist an interventionalist in spatial understanding and depth perception of spatially complex anatomy and could increase confidence in pre-procedural planning. Future studies will be conducted with additional cases to further validate the utility of the platform in surgical planning decisions and to expand the platform for patient/resident education, telemedicine, and intra-operative use.


Sign in / Sign up

Export Citation Format

Share Document