scholarly journals Salt-tolerance screening in Limonium sinuatum varieties with different flower colors

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. Conclusion These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


2019 ◽  
Vol 46 (1) ◽  
pp. 82 ◽  
Author(s):  
Fang Yuan ◽  
Xue Liang ◽  
Ying Li ◽  
Shanshan Yin ◽  
Baoshan Wang

Limonium bicolor is a typical recretohalophyte with salt glands in the epidermis, which shows maximal growth at moderate salt concentrations (100mM NaCl) but reduced growth in the presence of excess salt (more than 200mM). Jasmonic acid (JA) alleviates the reduced growth of L. bicolor under salt stress; however, the underlying mechanism is unknown. In this study we investigated the effects of exogenous methyl jasmonate (MeJA) application on L. bicolor growth at high NaCl concentrations. We found that treatment with 300mM NaCl led to dramatic inhibition of seedling growth that was significantly alleviated by the application of 0.03mM MeJA, resulting in a biomass close to that of plants not subjected to salt stress. To determine the parameters that correlate with MeJA-induced salt tolerance (assessed as the biomass production in saline and control conditions), we measured 14 physiological parameters relating to ion contents, plasma membrane permeability, photosynthetic parameters, salt gland density, and salt secretion. We identified a correlation between individual indicators and salt tolerance: the most positively correlated indicator was net photosynthetic rate, and the most negatively correlated one was relative electrical conductivity. These findings provide insights into a possible mechanism underlying MeJA-mediated salt stress alleviation.


1981 ◽  
Vol 8 (3) ◽  
pp. 267 ◽  
Author(s):  
MK Smith ◽  
JA Mccomb

The effect of NaCl on growth was examined for whole plants and callus cultures of a salt-sensitive glycophyte (Phaseolus vulgaris L.), a salt-tolerant glycophyte (Beta vulgaris L.) and two halophytes (Atriplex undulata D. Dietr., which has salt glands, and Suaeda australis (R. Br.) Moq., a succulent). Whole plants were grown in nutrient solution culture at NaCl concentrations of 0.1-250 mM. Callus cultures were initiated from the same seed stock, and similar saline regimes were imposed. Whole plant responses were characteristic for the various types of plants: P. vulgaris showed a decrease in growth with increasing salinity; B. vulgaris showed a slight increase in growth at the intermediate salt level and a decrease at higher levels; A. undulata and S. australis showed well defined growth optima at 62.5 mM and 125 mM NaCl, respectively. Callus cultures of P. vulgaris and the two halophytes grew very poorly when salinity was increased. Callus of B. vulgaris showed the same tolerance to salt as did the whole plants. Thus salt tolerance of the halophytes depends on the anatomical and physiological complexity of the intact plant while callus from B. vulgaris appears to have a mechanism(s) of salt tolerance which operates at the cellular level.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2206
Author(s):  
Hafiz Muhammad Ali Raza ◽  
Muhammad Amjad Bashir ◽  
Abdur Rehim ◽  
Qurat-Ul-Ain Raza ◽  
Graeme P. Berlyn ◽  
...  

Maize (Zea mays L.) is an important crop used for feeding humans and cattle globally. Deficiency of potassium (K) and zinc (Zn) adversely impacts the maize crop productivity and quality. However, the application of these nutrients shows variant responses in different maize cultivars. To understand this perspective, the current study aimed at investigating K and Zn’s optimal concentration in different hybrid and inbred maize cultivars. The treatments were based on three zinc levels (0, 6, and 12 mg Zn kg−1) and K levels (0, 30, and 60 mg kg−1), and their respective combinations. The experiment results showed that combined fertilization approaches of Zn and K (Zn12K60) improved the plant biometric, and physiological attributes of maize crop. The results revealed a significant increase in plant height (45%), fresh weight (70%), and dry weight (45%). Similarly, physiological attributes significantly improved the relative water content (76.4%), membrane stability index (77.9%), chlorophyll contents (170%), and photosynthetic rate (130%) in both inbred and hybrid genotypes. Furthermore, Zn and K (Zn12K60) increased transpiration rate (E), stomatal conductance (Ci), and internal CO2. In conclusion, maize hybrids (Neelam and DK-6142) were observed best compared with inbred (Afghoi and P-1543) cultivars with the combined application of Zn and K (Zn12K60). Thus, these inbred varieties should be preferred for fodder requirement with optimum fertilizer (Zn12K60) application in Zn deficient soils.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


1983 ◽  
Vol 100 (1) ◽  
pp. 221-225 ◽  
Author(s):  
M. S. Rahman

SUMMARYChlorophyll contents per unit leaf area and unit dry weight, chlorophylla:bratio, visual colour rating, specific leaf area, and leaf fresh weight: dry weight ratios were estimated for 12 couch (bermudagrass) varieties (Cynodonspp. L.) in winter (July) and spring (October). Net photosynthetic and dark respiration rates were estimated in winter only.The chlorophyll contents per unit leaf area were higher in all varieties in spring than in winter, but per unit weight were more variable. The varieties differed substantially in the net photosynthetic and dark respiration rates. The specific leaf areas were greater in winter than in spring in five varieties: in others it changed little. The fresh: dry weight ratios of the leaves were almost constant between varieties in the spring but varied greatly during the winter. Visual colour ratings were well correlated with chlorophyll contents per unit area but not with weight. The net photosynthetic rate was closely correlated with chlorophyll content (per unit area) but not so closely with colour rating.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Latifa Al Kharusi ◽  
Ramanjulu Sunkar ◽  
Rashid Al-Yahyai ◽  
Mahmoud W. Yaish

Salinity is a global agricultural problem, resulting in a significant reduction in the plantation areas and the crop yields, especially in arid and semiarid regions. The date palm is relatively salt-tolerant plant species, although the nature of salt tolerance is poorly understood. In this study, the salt stress responses of a salt-tolerant “Umsila” was compared with salt-susceptible “Zabad” date palm cultivars. Various physiological parameters, plant-water relations, and anatomical characteristics were analyzed. The results revealed that although salinity has negatively affected both cultivars, Umsila exhibited more stable photosynthesis than Zabad as reflected by the quantum yield (Qy) and the stomatal conductance (GS). Similarly, Umsila showed a more dynamic root system and efficient water relations than Zabad as demonstrated by the leaf water potential (LWP) and relative water content (RWC) during salinity. Umsila also accumulated greater abundances of soluble sugars, potassium (K+), calcium (Ca+2), proline, glycine betaine, and lignin and formed extra layers of Casparian strips in the root tissues when the seedlings were grown under saline conditions. Together, the results obtained from this study have offered some insights into the salt tolerance mechanisms in the date palm.


Author(s):  
Omid Sadeghipour

A pot experiment was conducted to investigate the role of methyl jasmonate (MeJA) in alleviation of the adverse effects of salinity on cowpea. Seeds were soaked in 0, 25 and 50 µM MeJA for 20 h and then the seedlings were irrigated with different concentrations of NaCl (0, 50 and 100 mM). Salt stress markedly decreased growth attributes namely shoot length, shoot and root dry weight and leaf area. NaCl stress also significantly reduced chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins and relative water content (RWC). Furthermore, salinity noticeably increased proline and total soluble sugars content. Nonetheless, seeds treatment with MeJA especially 50 µM, improved the growth of cowpea plants by increasing chlorophyll value, stomatal conductance, net photosynthetic rate, total soluble proteins, proline accumulation, total soluble sugars and RWC under salt stress conditions. Thus results indicate that pretreatment of seeds with MeJA could be used as an effective technique for improving cowpea plants tolerance to salt stress.


2014 ◽  
Vol 522-524 ◽  
pp. 380-384
Author(s):  
Guo Liang Han ◽  
Ming Li Liu ◽  
Na Sui

The effects of NaCl on the growth, the number of salt gland and salt secretion ofAeluropus littoraliswere studied at different NaCl concentrations. Results showed that with the increase of NaCl concentration, the growth ofAeluropus littoraliswas inhibited and MDA content increased gradually. With the increase of NaCl concentration, fresh weight, dry weight of single plant decreased, andA. littoralissalt secretion increased significantly. Salt gland density was significantly higher with the increase of NaCl concentration, and the total number of salt glands on the low surface was more than that on the upper surface. At the same time, the average secretion rates of individual salt glands increased. These showed that the salt glands could effectively secrete salt outside the body to keep normal physiological function.


2021 ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing mannitol with the same osmotic pressure as 100 mM NaCl or LiCl with the same ionic effect as 100 mM NaCl demonstrated that overexpressing LbHLH relieved osmotic stress. Conclusion These results indicate that LbHLH enhances salt tolerance by alleviating osmotic damage under NaCl stress.


Sign in / Sign up

Export Citation Format

Share Document