Effect of Salt Stress on the Salt Secretion in Aeluropus littoralis

2014 ◽  
Vol 522-524 ◽  
pp. 380-384
Author(s):  
Guo Liang Han ◽  
Ming Li Liu ◽  
Na Sui

The effects of NaCl on the growth, the number of salt gland and salt secretion ofAeluropus littoraliswere studied at different NaCl concentrations. Results showed that with the increase of NaCl concentration, the growth ofAeluropus littoraliswas inhibited and MDA content increased gradually. With the increase of NaCl concentration, fresh weight, dry weight of single plant decreased, andA. littoralissalt secretion increased significantly. Salt gland density was significantly higher with the increase of NaCl concentration, and the total number of salt glands on the low surface was more than that on the upper surface. At the same time, the average secretion rates of individual salt glands increased. These showed that the salt glands could effectively secrete salt outside the body to keep normal physiological function.

2021 ◽  
Vol 22 (4) ◽  
pp. 2203 ◽  
Author(s):  
Chaoxia Lu ◽  
Fang Yuan ◽  
Jianrong Guo ◽  
Guoliang Han ◽  
Chengfeng Wang ◽  
...  

Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline–alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.


1982 ◽  
Vol 9 (6) ◽  
pp. 725 ◽  
Author(s):  
PI Boon ◽  
WG Allaway

Leaves of A. marina are unsuitable for measurements of salt secretion because the lower leaf surface, where most secretion occurs, is densely tomentose. Washing of leaves with distilled water, although effective in removing secreted salt, was followed by a period of apparently increased salt secretion. Washing of leaves with strong osmotica was not followed by such a large increase in the rate of salt secretion as was washing with distilled water, suggesting that this acceleration was due to an osmotic flow of water into the salt-gland complex from the washing liquid. The apparent overestimation of secretion rates over short periods was probably not due to incomplete removal of pre-secreted salt by the initial wash nor, on the basis of a comparison of leaf washings with salt contents of the leaf, to the leaching of salt from the leaf interior into the solution used to wash the leaf. Subtraction of the amount of salt secreted in the first 2 h from the total amount secreted over periods of up to 96 h resulted in roughly constant calculated rates of secretion, so that in this species the steady rate of salt secretion, not accelerated by washing with distilled water may be calculated by using a duplicate set of leaves to measure the salt secreted in the first 2 h, and subtracting this from the total secreted over a longer period. Rates of Cl- secretion, so corrected, were about 0.2 �mol m-� s-�. Unless this allowance is made, secretion rates based on washing with distilled water are overestimates, although the degree of overestimation is reduced as the length of secretion period is increased.


2016 ◽  
Vol 64 (4) ◽  
pp. 277 ◽  
Author(s):  
Akihiro Yamamoto ◽  
Masatsugu Hashiguchi ◽  
Ryo Akune ◽  
Takahito Masumoto ◽  
Melody Muguerza ◽  
...  

Several zoysiagrasses (Zoysia spp.) have been reported to have leaf-epidermal salt glands, and it has been suggested that salt gland density, salt secretion and salt tolerance are positively correlated. The economically most important Zoysia species are Zoysia japonica Steud., Zoysia matrella Merr., and Zoysia pacifica (Goudswaard) M. Hotta & Kuroki, and among these, Z. matrella is considered to be the most salt-tolerant. In this study, we investigated the salt gland density, and characterised the secretion and accumulation of Na+ of 48 accessions of the three Zoysia species. We did not find any morphological differences in salt glands of Z. japonica and Z. pacifica, but large bicellular salt glands were found only on the adaxial side of Z. matrella. In addition, salt gland density differed significantly within and between the species. Under salt stress, all accessions accumulated and secreted Na+ at different rates. Z. japonica was a salt-accumulating type, whereas Z. matrella and Z. pacifica secreted most of the absorbed salt. However, the correlation between salt gland density and salt accumulation/secretion were not observed. Furthermore, Z. pacifica had the lowest gland density but showed the highest Na+ uptake and a secretion rate similar to most salt-tolerant Z. matrella. These results suggest that response to salt stress, namely, salt accumulation/secretion, is different between species, and that salt gland density and salt secretion are not always positively correlated.


1969 ◽  
Vol 47 (6) ◽  
pp. 1133-1138 ◽  
Author(s):  
Maryanne Robinson Hughes ◽  
Frank E. Ruch Jr.

The spontaneously produced salt gland secretion (SGS) and tears of the domestic duck, Anas platyrhynchos, were analyzed for sodium (Na), potassium (K), and chloride (Cl) (Cl in SGS only). Acclimation to seawater did not enhance the concentrating ability of the salt glands. The NaCl concentration exceeded that of seawater by only a small margin. The tears of saline-acclimated birds contained less Na and more K than birds drinking water with low NaCl content. Salt stress significantly increased the weight of the salt glands and of the Harderian glands; the lacrymal glands were not affected. An estimation of the relative possible contribution of the cloacal fluid, SGS, and tears to cation excretion was made.


1985 ◽  
Vol 248 (6) ◽  
pp. R702-R708
Author(s):  
R. J. Lowy ◽  
F. P. Conte

A batch method for isolating viable salt glands from the naupliar brine shrimp (Artemia salina) has been developed. This protocol produces a final preparation consisting of approximately 185 isolated salt glands, representing 1 X 10(4) secretory cells/g wet wt nauplii, with a final purity of 88%. Assays of cell integrity and function indicate good retention of in situ characteristics. Vital dye was excluded by 95% of the cells for at least 24 h. The O2 consumption rate was 22.7 nM O2 X min-1 X mg protein-1 and could be altered predictably by compounds known to affect oxidative phosphorylation and ion transport. The specific activity of the Na+-K+-ATPase in the salt gland, measured here for the first time, was 9.1 mM Pi X h-1 X mg protein-1. This is a substantial proportion of the body total, 17%, as expected for an active ion-transporting epithelium.


2008 ◽  
Vol 16 (2) ◽  
pp. 44-45
Author(s):  
Sheetal Rao ◽  
Michael W. Pendleton ◽  
Marla L. Binzel ◽  
E. Ann Ellis

Zoysia, a common turf grass, is characterized by the presence of functional salt glands. These glands are specialized structures through which the plants excrete excess salt. Research on the mechanism of salt secretion in Zoysia matrella (Manila grass) prompted the development of a specimen preparation technique that would preserve the secreted salt and salt gland. Conventional aqueous preparative techniques wash away the secreted salt on the leaf surface. A specimen preparation technique was modified from a simple cryo-preparative technique for examining hydrogels in the transmission electron microscope.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. Conclusion These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


1968 ◽  
Vol 48 (2) ◽  
pp. 427-434
Author(s):  
A. E. BRAFIELD

1. The oxygen consumption of the echiuroid Bonellia viridis has been investigated by means of a continuous-flow polarographic respirometer. 2. The general rate of oxygen consumption per unit dry weight is similar to that characteristic of polychaetes, and declines exponentially with increasing body size. 3. The rate of oxygen consumption rises in the light and falls again if darkness is restored. 4. The oxygen consumption of the isolated proboscis plus that of the isolated body region corresponds closely to that of the entire animal. 5. The oxygen consumption per unit dry weight of the proboscis is considerably higher than that of the body region. 6. The oxygen consumption of an isolated body region increases in the presence of light, but that of an isolated proboscis does not. 7. These findings are discussed in relation to the biology of the animal, observed muscular activity, and the occurrence of the pigment bonellin.


Sign in / Sign up

Export Citation Format

Share Document