Relationship between visual colour rating and chlorophyll content, photosynthetic rate, and some growth characteristics in couchgrass (Cynodonspp. L.)

1983 ◽  
Vol 100 (1) ◽  
pp. 221-225 ◽  
Author(s):  
M. S. Rahman

SUMMARYChlorophyll contents per unit leaf area and unit dry weight, chlorophylla:bratio, visual colour rating, specific leaf area, and leaf fresh weight: dry weight ratios were estimated for 12 couch (bermudagrass) varieties (Cynodonspp. L.) in winter (July) and spring (October). Net photosynthetic and dark respiration rates were estimated in winter only.The chlorophyll contents per unit leaf area were higher in all varieties in spring than in winter, but per unit weight were more variable. The varieties differed substantially in the net photosynthetic and dark respiration rates. The specific leaf areas were greater in winter than in spring in five varieties: in others it changed little. The fresh: dry weight ratios of the leaves were almost constant between varieties in the spring but varied greatly during the winter. Visual colour ratings were well correlated with chlorophyll contents per unit area but not with weight. The net photosynthetic rate was closely correlated with chlorophyll content (per unit area) but not so closely with colour rating.

1996 ◽  
Vol 121 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Ursula Schuch ◽  
Richard A. Redak ◽  
James Bethke

Six cultivars of poinsettia (Euphorbia pulcherrima Wind.), `Angelika White', `Celebrate 2', `Freedom Red', `Lilo Red', `Red Sails', and `Supjibi Red' were grown for 9 weeks during vegetative development under three constant-feed fertilizer treatments, 80,160, or 240 mg N/liter and two irrigation regimes, well-watered (high irrigation) or water deficient (low irrigation). Plants fertilized with 80 or 240 mg N/liter were 10% to 18% shorter, while those fertilized with 160 mg N/liter were 25 % shorter with low versus high irrigation. Leaf area and leaf dry weight increased linearly in response to increasing fertilizer concentrations. Low irrigation reduced leaf area, leaf, stem, and shoot dry weight 3670 to 41%. Cultivars responded similarly to irrigation and fertilizer treatments in all components of shoot biomass production and no interactions between the main effects and cultivars occurred. Stomatal conductance and transpiration decreased with increasing fertilizer rates or sometimes with low irrigation. Highest chlorophyll contents occurred in leaves of `Lilo Red' and `Freedom Red'. Leaves of plants fertilized with 80 mg N/liter were deficient in leaf N and had 40 % to 49 % lower leaf chlorophyll content compared to plants fertilized with 160 or 240 mg N/liter. Irrigation had no effect on leaf N or chlorophyll content. At the end of the experiment leaves of `Supjibi Red' and `Angelika White' contained higher concentrations of soluble proteins than the other four cultivars.


1998 ◽  
Vol 46 (1) ◽  
pp. 103 ◽  
Author(s):  
Catherine E. Lovelock

Photosynthetic characteristics of tree species from the tropical C3 monocotyledon genus Pandanus were compared with C3 dicotyledon species growing in similar environments. The Pandanus species had similar maximum photosynthetic rates (Amax) to dicotyledon tree species in leaves from both sun and shaded environments when Amax was expressed on an area basis. Because of the low specific leaf area of the schlerophyllous leaves of the Pandanus compared to the dicotyledon species, the similarity in Amax was no longer evident when Amax was expressed on a dry-weight basis. Leaf dark respiration rates of the Pandanus on a leaf area and weight basis were generally lower than the shade-intolerant dicotyledons and similar to the shade-tolerant dicotyledon species. Low dark respiration rates and low specific leaf area of the Pandanus may be important characteristics for growth and survival in environments where resource levels are low and the likelihood of tissue damage is high.


2005 ◽  
Vol 37 (5) ◽  
pp. 425-432 ◽  
Author(s):  
Ana PINTADO ◽  
Leopoldo G. SANCHO ◽  
T. G. Allan GREEN ◽  
José Manuel BLANQUER ◽  
Roberto LÁZARO

The Tabernas badlands in semiarid south-east Spain is one of the driest regions in Europe with a mean annual precipitation of c. 240 mm. The landscape is deeply dissected, with canyons, ramblas and sparsely vegetated eroded badland slopes. The vegetation is predominantly a biological soil crust consisting of different types of lichen-rich communities, one of the more conspicuous being dominated by Diploschistes diacapsis (Ach.) Lumbsch. This lichen is mainly restricted to the north- facing slopes, where it forms extensive whitish carpets and probably plays an important role in preventing erosion of the slopes and allowing plant colonization. South-facing slopes are much more eroded and generally lack vegetation. %The photosynthetic performance of north (shade) and south-facing (sun) populations of D. diacapsis was studied to determine if these different populations showed any adaptations to the microclimatic conditions of their individual habitats. The response of CO2 exchange to light intensity, temperature and water content was measured under controlled conditions in the laboratory. Dry weight-based net photosynthetic rates were higher in the southern-exposed population but quantum efficiency, and light compensation points were similar. Thallus weight per unit area (LMA) was considerably higher for shade specimens but maximum water content and optimal water content were very similar and chlorophyll content on a dry weight basis was also similar. Chlorophyll content on an area basis was higher in the northern-exposed population and always much larger than those reported in other studies on the same species (up to 8 times larger) with the result that NP values on a chlorophyll basis were relatively low. The larger LMA meant that shade thalli stored more water per unit area which should ensure longer active periods than sun thalli. The results support a strategy pair of high NP and short active time versus low NP and long active time, both having been reported for other soil crust species. However, the visibly larger biomass of the shade D. diacapsis suggests that the lichen is at the limit of its adaptability in these habitats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.


Author(s):  
Y. Rajasekhara Reddy ◽  
G. Ramanandam ◽  
P. Subbaramamma ◽  
A. V. D. Dorajeerao

A field experiment was carried out during rabi season of 2018-2019, at college farm, College of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laidout in a Randomised Block Design with eleven treatments (viz., T1- NAA @ 50 ppm, T2-NAA @ 100 ppm, T3-GA3 @ 50 ppm,  T4-GA3 @ 100 ppm, T5-Thiourea @ 250 ppm, T6-Thiourea @ 500 ppm, T7-28-Homobrassinolide @ 0.1 ppm, T8-28-Homobrassinolide @ 0.2 ppm, T9-Triacontinol @ 2.5 ppm, T10-Triacontinol @ 5 ppm, T11-(Control) Water spray) and three replications. The treatments were imposed at 30 and 45 DAT in the form of foliar spray. Foliar application of GA3@ 100 ppm (T4) had recorded the maximum plant height (108.20 cm), leaf area (9.53 cm2) and leaf area index (0.74). Foliar application of thiourea @ 250 ppm (T5) had recorded the maximum values with respect to number of primary branches (15.03 plant-1), number of secondary branches (83.40 plant-1), plant spread (1793 cm2 plant-1), fresh weight (376.29 g plant-1), dry weight (103.54 g plant-1) and number of leaves plant-1((298.8). The same treatment (T5) had recorded the highest values with respect to crop growth rate (1.44 gm-2d-1), chlorophyll-a (1.40 mg g-1), chlorophyll-b (0.076 mg g-1) and total chlorophyll contents (1.48 mg g-1) in the leaves.


2020 ◽  
Vol 31 (2) ◽  
pp. 127-137
Author(s):  
Chatarina Lilis Suryani ◽  
◽  
Tutik Dwi Wahyuningsih ◽  
Supriyadi Supriyadi ◽  
Umar Santoso ◽  
...  

Plant leaves are the primary source of natural colorants for food, mainly due to their chlorophyll content. However, the plant types and the degree of leaf maturity determine the quality and quantity of the chlorophyll. This study aimed to determine the best maturity level of pandan (Pandanus amaryllifolius Roxb.) leaves that serves as potential source of chlorophyll for natural food colorants. Eighty three pandan plants obtained from six different farming locations in Bantul Regency, Yogyakarta, Indonesia were used as samples. The leaves were grouped into four levels of maturity using descriptive statistics based on their morphology, anatomy, color, and chlorophyll contents. The results showed that the average number of leaves ranged from 20-24 leaves per plant (at 95% confidence interval), and 96.4% of the plant had a maximum of 24 leaves. The leaf maturity was grouped into (1) young, (2) medium, (3) mature, and (4) over mature, corresponding to leaf number 1-6, 7-12, 13-18, and 19-24, respectively. The higher the leaf maturity, the higher the chlorophyll content. However, the over mature leaves were only slightly different from the mature ones. In addition, pandan leaves have specific flavor and contain carotenoid, phenolic, and flavonoid substances. Anatomically, the mesophyll’s size was greatest in the mature leaves, while the size of chloroplast was not significantly different from medium to over mature leaves. Based on the chlorophyll content and mesophyll size, it was concluded that mature pandan leaves were the best source of chlorophyll, containing chlorophyll of 623.08 mg/100 g dry weight (DW).


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 265 ◽  
Author(s):  
Ping Yang ◽  
Muhammad Azher Nawaz ◽  
Fuxin Li ◽  
Lisha Bai ◽  
Jie Li

Autotoxicity is a common problem being faced in protected vegetable cultivation system. Phytoremediation of plant autotoxicity is an emerging concept to minimize deterioration of soil environment and reduction of yield and quality of vegetable crops. Brassinosteroids (BRs) have been reported as a potential phytohormone to assist phytoremediation. However, the effects of BRs-induced autotoxicity stress on plant growth, photosynthesis and antioxidant defense system are poorly understood. Hence, we focused on the changes in physiological characteristics and ultrastructure of cucumber leaves in response to the application of 24-epibrassinolide (EBR) under autotoxicity stress conditions. The results showed that leaf area, plant height, fresh weight and dry weight of cucumber were obviously decreased under autotoxicity stress conditions. EBR application obviously improved the phenotypic characteristics of cucumber seedlings. Chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate of cucumber leaves were markedly reduced under autotoxicity stress conditions. Application of EBR improved the photosynthetic pigments (chlorophyll a by 15.80%, chlorophyll b by 18.70% and total chlorophyll content by 17.30%), net photosynthetic rate by 36.40% and stomatal opening of leaves under autotoxicity stress conditions. EBR application also maintained the integrity of chloroplast and thylakoid structures under autotoxicity stress conditions. The activity of catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) and antioxidative compounds ascorbate (AsA) and reduced glutathione (GSH) contents were markedly decreased, however, these were obviously increased after EBR application under autotoxicity stress. EBR application also increased the soluble sugar and protein, and proline concentration by 59.70%, 7.22% and 36.58%, respectively in the leaves of cucumber, decreased malondialdehyde by 24.13% and reactive oxygen species contents (H2O2 by 35.17%, O2− by 12.01% and •OH by 16.59%), and reduced the relative permeability of the cell membrane by 14.31%. These findings suggest that EBR application enhanced the photosynthetic capacity of leaves, maintained the integrity of chloroplast and thylakoid structures, and effectively alleviated the damage of membrane caused by lipid peroxidation and root damage under autotoxicity stress conditions. The growth inhibition effect of autotoxicity stress on cucumber was reduced by EBR application.


Sign in / Sign up

Export Citation Format

Share Document