scholarly journals Hybrid halide perovskite neutron detectors

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pavao Andričević ◽  
Gábor Náfrádi ◽  
Márton Kollár ◽  
Bálint Náfrádi ◽  
Steven Lilley ◽  
...  

AbstractInterest in fast and easy detection of high-energy radiation (x-, γ-rays and neutrons) is closely related to numerous practical applications ranging from biomedicine and industry to homeland security issues. In this regard, crystals of hybrid halide perovskite have proven to be excellent detectors of x- and γ-rays, offering exceptionally high sensitivities in parallel to the ease of design and handling. Here, we demonstrate that by assembling a methylammonium lead tri-bromide perovskite single crystal (CH3NH3PbBr3 SC) with a Gadolinium (Gd) foil, one can very efficiently detect a flux of thermal neutrons. The neutrons absorbed by the Gd foil turn into γ-rays, which photo-generate charge carriers in the CH3NH3PbBr3 SC. The induced photo-carriers contribute to the electric current, which can easily be measured, providing information on the radiation intensity of thermal neutrons. The dependence on the beam size, bias voltage and the converting distance is investigated. To ensure stable and efficient charge extraction, the perovskite SCs were equipped with carbon electrodes. Furthermore, other types of conversion layers were also tested, including borated polyethylene sheets as well as Gd grains and Gd2O3 pellets directly engulfed into the SCs. Monte Carlo N-Particle (MCNP) radiation transport code calculations quantitatively confirmed the detection mechanism herein proposed.

Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


1983 ◽  
Vol 206 (1-2) ◽  
pp. 107-117 ◽  
Author(s):  
Masaaki Kobayashi ◽  
Kenjiro Kondo ◽  
Hiromi Hirabayashi ◽  
Shin-ichi Kurokawa ◽  
Mitsuhiko Taino ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kanishka Kobbekaduwa ◽  
Shreetu Shrestha ◽  
Pan Adhikari ◽  
Exian Liu ◽  
Lawrence Coleman ◽  
...  

AbstractWe in-situ observe the ultrafast dynamics of trapped carriers in organic methyl ammonium lead halide perovskite thin films by ultrafast photocurrent spectroscopy with a sub-25 picosecond time resolution. Upon ultrafast laser excitation, trapped carriers follow a phonon assisted tunneling mechanism and a hopping transport mechanism along ultra-shallow to shallow trap states ranging from 1.72–11.51 millielectronvolts and is demonstrated by time-dependent and independent activation energies. Using temperature as an energetic ruler, we map trap states with ultra-high energy resolution down to < 0.01 millielectronvolt. In addition to carrier mobility of ~4 cm2V−1s−1 and lifetime of ~1 nanosecond, we validate the above transport mechanisms by highlighting trap state dynamics, including trapping rates, de-trapping rates and trap properties, such as trap density, trap levels, and capture-cross sections. In this work we establish a foundation for trap dynamics in high defect-tolerant perovskites with ultra-fast temporal and ultra-high energetic resolution.


2009 ◽  
Vol 02 (01) ◽  
pp. 133-156 ◽  
Author(s):  
D. L. Friesel ◽  
T. A. Antaya

Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high energy particles, this article will chronicle the development of one type of accelerator — the cyclotron, and its medical applications. These medical and industrial applications eventually led to the commercial manufacture of both small and large cyclotrons and facilities specifically designed for applications other than scientific research.


2017 ◽  
Vol 12 (S331) ◽  
pp. 201-205
Author(s):  
A. J. Nayana ◽  
Poonam Chandra

AbstractHESS J1731−347 a.k.a. SNR G353.6−0.7 is one of the five known very high energy (VHE, Energy > 0.1 TeV) shell-type supernova remnants. We carried out Giant Metrewave Radio Telescope (GMRT) observations of this TeV SNR in 1390, 610 and 325 MHz bands. We detected the 325 and 610 MHz radio counterparts of the SNR G353.6−0.7 (Nayana et al. 2017). We also determined the spectral indices of individual filaments and our values are consistent with the non-thermal radio emission. We compared the radio morphology with that of VHE emission. The peak in radio emission corresponds to the faintest feature in the VHE emission. We explain this anti-correlated emission in a possible leptonic origin of the VHE γ-rays.


1997 ◽  
Vol 170 ◽  
pp. 22-24 ◽  
Author(s):  
Seth. W. Digel ◽  
Stanley D. Hunter ◽  
Reshmi Mukherjee ◽  
Eugéne J. de Geus ◽  
Isabelle A. Grenier ◽  
...  

EGRET, the high-energy γ-ray telescope on the Compton Gamma-Ray Observatory, has the sensitivity, angular resolution, and background rejection necessary to study diffuse γ-ray emission from the interstellar medium (ISM). High-energy γ rays produced in cosmic-ray (CR) interactions in the ISM can be used to determine the CR density and calibrate the CO line as a tracer of molecular mass. Dominant production mechanisms for γ rays of energies ∼30 MeV–30 GeV are the decay of pions produced in collisions of CR protons with ambient matter and Bremsstrahlung scattering of CR electrons.


1991 ◽  
Vol 128 (1) ◽  
pp. S117 ◽  
Author(s):  
J. R. Maisin ◽  
A. Wambersie ◽  
G. B. Gerber ◽  
G. Mattelin ◽  
M. Lambiet-Collier ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 53 ◽  
Author(s):  
Dilip Sundaram

The metal-water system is attractive for propulsion and energy-conversion applications. Of all metals, aluminum is attractive due to its high energy density, relative safety, and low cost. Experimental studies provide new insight on the combustion and propulsive behaviors. The burning rate is found to be a strong function of both pressure and particle size. Furthermore, there is a wide scatter in the measured pressure exponents due to differences in particle size, pressure, pH, and equivalence ratio. A major problem with Al/H2O mixtures is incomplete combustion and poor impulses, thereby rendering Al/H2O mixtures unsuitable for practical applications. Efforts to improve the performance of Al/H2O mixtures have only met with moderate success. Although experiments have revealed these new trends, not much is offered in terms of the underlying physics and mechanisms. To explore the combustion mechanisms, theoretical models based on energy balance analysis have been developed. These models involve numerous assumptions and many complexities were either ignored or treated simplistically. The model also relies on empirical inputs, which makes it more a useful guide than a predictive tool. Future works must endeavor to conduct a more rigorous analysis of metal-water combustion. Empirical inputs should be avoided and complexities must be properly treated to capture the essential physics of the problem. The model should help us properly understand the experimental trends, offer realistic predictions for unexplored conditions, and suggest guidelines and solutions in order to realize the full potential of metal-water mixtures.


Sign in / Sign up

Export Citation Format

Share Document