scholarly journals Lateral resolution limit of laser Doppler vibrometer microscopes for the measurement of surface acoustic waves

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Kowarsch ◽  
Christian Rembe

AbstractThe lateral or transverse resolution of single-point interferometers for vibration measurement is especially critical for microelectromechanical systems (MEMS) vibrating up to the gigahertz range. In this regime, the acoustic wavelengths are typically in the range of the size of the laser focus. Thus, a successful vibration measurement requires distinct knowledge about the lateral resolution limit and its dependencies with instrumentation parameters. In this paper, we derive an analytic approximation formula, which allows for estimation of the systematic measurement deviation of the vibration amplitude and, thus, a definition of the lateral resolution limit of single-point interferometers for vibration measurement. Further, a compensation and an optimum numerical aperture are proposed the reduce the measurement deviation. For this, the model includes a laser-interferometer microscope of Mach-Zehnder type with Gaussian laser beams considering the Gouy effect and wavefront curvature. As a measurement scenario, an unidirectional surface acoustic wave (SAW) is regarded. The theoretic findings have been validated in the experiment with a representative vibration measurement on a SAW filter at $$433\,{\mathrm {MHz}}$$ 433 MHz with our heterodyne laser-Doppler interferometer with offset-locked semiconductor lasers. The provided formulas help instrument designers and users to choose suitable instrument parameters, especially the numerical aperture of the utilized microscope objective.

Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


2016 ◽  
Vol 187 ◽  
pp. 235-257 ◽  
Author(s):  
Tatiana Konevskikh ◽  
Rozalia Lukacs ◽  
Reinhold Blümel ◽  
Arkadi Ponossov ◽  
Achim Kohler

Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of the infrared microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we critically reviewed existing algorithms for the correction of Mie scattering and suggest improvements. We developed an iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the retrieval of pure absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm uses the van de Hulst approximation formula for the extinction efficiency employing a complex refractive index. The iterative algorithm involves the establishment of an EMSC meta-model. While existing iterative algorithms for the correction of resonant Mie scattering employ three independent parameters for establishing a meta-model, we could decrease the number of parameters from three to two independent parameters, which reduced the calculation time for the Mie scattering curves for the iterative EMSC meta-model by a factor of 10. Moreover, by employing the Hilbert transform for evaluating the Kramers–Kronig relations based on a FFT algorithm in Matlab, we further improved the speed of the algorithm by a factor of 100. For testing the algorithm we simulate distorted apparent absorbance spectra by utilizing the exact theory for the scattering of infrared light at absorbing spheres, taking into account the high numerical aperture of infrared microscopes employed for the analysis of single cells and tissues. In addition, the algorithm was applied to measured absorbance spectra of single lung cancer cells.


2021 ◽  
pp. 2150350
Author(s):  
Yijun Jiang ◽  
Mingyuan Lu ◽  
Shiliang Wang ◽  
Han Huang

Temperature dependence of Young’s modulus of Ag microwhiskers was determined by a laser Doppler vibrometer. The Ag whiskers with diameters in sub-microns were synthesized by the use of physical vapor deposition (PVD). They have a five-fold twinned structure grown along the [1 1 0] direction. The temperature coefficient of Young’s modulus was measured to be [Formula: see text] ppm/K in the range of 300 K to 650 K. The measured values are very close to the reported values of [Formula: see text] ppm/K for bulk Ag single crystals. This finding can benefit the design of Ag-based micro/nano-electromechanical systems or micro/nano-interconnectors operated at elevated or lowered temperatures.


2001 ◽  
Vol 674 ◽  
Author(s):  
Takayuki Shima ◽  
Johoo Kim ◽  
Hiroshi Fuji ◽  
Nobufumi Atoda ◽  
Junji Tominaga

ABSTRACTSuper-resolution near-field structure (Super-RENS) was prepared by a heliconwave-plasma sputtering method to improve the disk property that is combined with a magneto-optical (MO) recording disk. Antimony and silver-oxide mask layers were prepared by the method and refractive indices were measured. Recording and retrieving of signals beyond the resolution limit (<370 nm) were achieved for both mask cases. Attempts to optimize the disk structure were also made using a conventional sputtering method. The smallest mark size was around 200 nm and the highest carrier-to-noise ratio (CNR) was 30 dB for 300-nm mark and 22 dB for 250-nm, when using a laser wavelength of 780 nm and a numerical aperture of 0.53. We have found that there is a competing super-resolutional mechanism besides Super-RENS that appears when high readout laser power is applied. This mechanism played rather an important role at least in the mark-size range of 200-370 nm.


Sign in / Sign up

Export Citation Format

Share Document