scholarly journals Mechanism of charge accumulation of poly(heptazine imide) gel

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Goichiro Seo ◽  
Yuki Saito ◽  
Miyu Nakamichi ◽  
Kyohei Nakano ◽  
Keisuke Tajima ◽  
...  

AbstractPhoto-stimuli response in materials is a fascinating feature with many potential applications. A photoresponsive gel of poly(heptazine imide), PHI, termed PHIG, exhibits photochromism, photoconductivity, and photo-induced charge accumulation, and is generated using ionic liquids and PHI. Although there are several examples of ionic liquid gels that exhibit photochromism and photoconductivity, this is the first report of an ionic liquid gel that exhibits both these properties as well as charge accumulation. We conducted experimental and theoretical investigations to understand the mechanism of the photostimulus response of PHIG, especially charge accumulation. The proposed model explains both the mechanism of charge accumulation and dark photocatalysis by PHI and provides new concepts in the field of photofunctional materials.

2015 ◽  
Vol 68 (10) ◽  
pp. 1513 ◽  
Author(s):  
Miaona Feng ◽  
Guoying Zhao ◽  
Hongling Gao ◽  
Suojiang Zhang

Novel tetracarboxyl-functionalized 2,2′-biimidazolium-based ionic liquids (ILs) with different anions were synthesized in two steps from readily available and sustainable starting materials including ammonium acetate, glyoxal, and halogenated propionic acid. The functionalized IL exhibited higher catalytic activity towards the cycloaddition of CO2 to terminal epoxides. With propylene oxide as a substrate, the optimum yield of propylene carbonate reached 82.7 % at an initial CO2 pressure of 2.0 MPa for 4 h at 140°C. Moreover, the functionalized IL catalyst displayed a high stability and can be reused for at least five cycles without obvious loss of catalytic activity. The results provide a simple and economical way to synthesize multi-functionalized imidazolium-based ILs with versatile potential applications.


Author(s):  
Joaquin Arias-Pardilla ◽  
Tulia Espinosa ◽  
José Sanes ◽  
Ana Eva Jiménez ◽  
Ginés Martínez-Nicolás ◽  
...  

Aluminum and its alloys are used in an increasing number of applications but the development of surface coatings and new techniques for corrosion resistance enhancement and for increasing wear resistance will be determinant for applications under aggressive environments. Ionic liquids have already found many industrial applications, including their use in surface protection. The present article will focus on the use of ionic liquids in aluminum and its alloys surface protection applications, including corrosion protection and inhibition, anodization and passivation processes, wear resistance, and potential applications of ionic liquid electrolytes in energy storage devices.


Lubricants ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 72 ◽  
Author(s):  
M.D. Avilés ◽  
C. Sánchez ◽  
R. Pamies ◽  
J. Sanes ◽  
M.D. Bermúdez

The present work intends to provide a brief account of the most recent advances in the use of ionic liquid crystals (ILCs) in the field of tribology, that is, the development of new lubricants with the ability to reduce the coefficients of friction and the wear rates of materials under sliding conditions. After a definition of ILCs and their relationship with neutral liquid crystals (LCs) and ionic liquids (ILs), the review will be focused on the influence of molecular structure and composition on the tribological performance, the combination with base oils, surfactants or water, and the different sliding configuration and potential applications. The main mechanisms proposed in order to justify the lubricating ability of ILCs will be analyzed. Special emphasis will be made for recent results obtained for fatty acid derivatives due to their renewable and environmentally friendly nature.


2016 ◽  
Vol 4 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Dominique de Caro ◽  
Christophe Faulmann ◽  
Lydie Valade ◽  
Kane Jacob ◽  
Benoit Cormary

Ionic liquids are used for controlling the growth of organic conductors as nanoparticles. We review the conditions of preparation of nanoparticles of conductors derived from tetrathiafulvalene (TTF), tetramethyltetraselenafulvalene (TMTSF) and bis-ethylenedithiotetrathiafulvalene (BEDT-TTF). They are prepared by electrocrystallization using an ionic liquid supporting electrolyte in which the cation plays the role of growth controller and the anion enters the composition of the expected organic conductor. Stable suspensions of nanoparticles are obtained in one case, a valuable characteristic for potential applications in electronic devices.


2020 ◽  
Vol 22 (36) ◽  
pp. 20524-20530
Author(s):  
Carlos López-Bueno ◽  
Marius R. Bittermann ◽  
Bruno Dacuña-Mariño ◽  
Antonio Luis Llamas-Saiz ◽  
María del Carmen Giménez-López ◽  
...  

Self-assembled ionic liquid crystals are anisotropic ionic conductors, with potential applications in areas as important as solar cells, battery electrolytes and catalysis. We show that the type of crystal formed depend on the strength of H-bonds.


Author(s):  
Sandeep Kumar ◽  
Navleen Kaur ◽  
Venus Singh Mithu

Membrane fusion is a key biological phenomenon with potential applications in biotechnology. In this work, we provide biophysical and structural evidence that liposomes composed of POPC/POPG phospholipids undergo fusion in the presence of ionic liquids containing 1-alkyl-3-methyl-imidazolium cations. The fusion phenomenon is confirmed using dynamic light scattering based size measurements, and Fluorescence based dye leakage and lipid mixing assays. <sup>1</sup>H-<sup>1</sup>H NOESY measurements using solid-state NMR spectroscopy were performed to obtain insights into fusion mechanism. It is found that ionic liquid induced splaying of phospholipid chains is crucial for overcoming the hydration barrier between the merging bilayers. Also, transiently lived fusion-holes are formed at the initial stages of bilayer mixing resulting in a leaky fusion phenomenon. <br><br>Although considered as “green” alternatives to conventional solvents, ionic liquids can exhibit cytotoxicity by altering the structural integrity of cellular membrane. Our study provides mechanistic details of the evolution of phospholipid membrane structure resulting in membrane fusion when subjected to increasing ionic liquid concentrations. We believe that findings of this study will further our understanding of ionic liquids induced cytotoxicity and non-protein assisted membrane fusion. <br><br>


2015 ◽  
Vol 6 (12) ◽  
pp. 2163-2178 ◽  
Author(s):  
Yuki Kohno ◽  
Shohei Saita ◽  
Yongjun Men ◽  
Jiayin Yuan ◽  
Hiroyuki Ohno

In this review we summarise recent progress on the design, properties, and potential applications of ionic liquid-derived polyelectrolytes showing thermoresponsive phase behaviour after mixing with water or other organic solvents.


2020 ◽  
Author(s):  
Sandeep Kumar ◽  
Navleen Kaur ◽  
Venus Singh Mithu

Membrane fusion is a key biological phenomenon with potential applications in biotechnology. In this work, we provide biophysical and structural evidence that liposomes composed of POPC/POPG phospholipids undergo fusion in the presence of ionic liquids containing 1-alkyl-3-methyl-imidazolium cations. The fusion phenomenon is confirmed using dynamic light scattering based size measurements, and Fluorescence based dye leakage and lipid mixing assays. <sup>1</sup>H-<sup>1</sup>H NOESY measurements using solid-state NMR spectroscopy were performed to obtain insights into fusion mechanism. It is found that ionic liquid induced splaying of phospholipid chains is crucial for overcoming the hydration barrier between the merging bilayers. Also, transiently lived fusion-holes are formed at the initial stages of bilayer mixing resulting in a leaky fusion phenomenon. <br><br>Although considered as “green” alternatives to conventional solvents, ionic liquids can exhibit cytotoxicity by altering the structural integrity of cellular membrane. Our study provides mechanistic details of the evolution of phospholipid membrane structure resulting in membrane fusion when subjected to increasing ionic liquid concentrations. We believe that findings of this study will further our understanding of ionic liquids induced cytotoxicity and non-protein assisted membrane fusion. <br><br>


2015 ◽  
Vol Volume 111 (Number 11/12) ◽  
Author(s):  
Prashant Reddy ◽  
◽  

Abstract Ionic liquids have been the subject of active research over the course of the last decade and have in the past been touted as one of the most promising technologies for revolutionising the chemical and petrochemical industries. The sheer abundance of potential ionic liquid structures coupled with their tuneable physico-chemical properties has endeared ionic liquids to the scientific community across a broad range of disciplines with potential applications that include pharmaceuticals, electrolytes, thermal energy storage media and liquid mirror telescopes. Within the context of a biorefinery for the production of biofuels and other bio-based products from renewable resources, the unique abilities of some ionic liquids to selectively dissolve biomass components or whole native biomass have been demonstrated. This ability has sparked extensive investigations of ionic liquids for the pretreatment of different biomass types, particularly for the production of cellulosic biofuels. However, the esoteric nature of ionic liquids persists and constructing a fundamental framework for correlating ionic liquid structures with useful applications remains a significantchallenge. In addition to the above, the more practical challenges of toxicity, high costs, high viscosities, low solids loading and complex recycling are key factors hindering the wide-scale uptake of ionic liquids as pretreatment solvents in a commercial biorefinery. This critical review provides insights from academic studies and the implications thereof for elevating ionic liquids from the status of ‘promising’ to ‘commercialisable’ in the pretreatment of biomass. It is vital that key hurdles for the commercialisation of ionic liquids in the form of high costs, high viscosities, poor water tolerance, toxicity, low solids loading and recovery/recycling be addressed.


2015 ◽  
Vol 2 (2) ◽  
pp. 168-197 ◽  
Author(s):  
Shiguo Zhang ◽  
Kaoru Dokko ◽  
Masayoshi Watanabe

Synthesis, characteristics, porous design, and potential applications of novel carbon materials derived from ionic liquid precursors have been reviewed, including future trends and prospects in this direction.


Sign in / Sign up

Export Citation Format

Share Document