scholarly journals Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ra Ham Lee ◽  
Jae-Don Oh ◽  
Jae Sam Hwang ◽  
Hak-Kyo Lee ◽  
Donghyun Shin

AbstractMalignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.

2004 ◽  
Vol 32 (6) ◽  
pp. 967-972 ◽  
Author(s):  
C.J. McInerny

A fundamental process in biology is the mechanism by which cells duplicate and divide to produce two identical daughter cells. The fission yeast, Schizosaccharomyces pombe, has proved to be an excellent model organism to study the role that gene expression plays in this process. The basic paradigm emerging is that a number of groups of genes are expressed in successive waves at different cell cycle times. Transcription of a particular group is controlled by a common DNA motif present in each gene's promoter, bound by a transcription factor complex. Each motif and transcription factor complex is specific to the time in the cell cycle when the group of genes is expressed. Examples of this are the MBF (MCB-binding factor)/MCB (MluI cell cycle box) system controlling gene expression at the start of S-phase, and PBF (PCB-binding factor)/PCB (Pombe cell cycle box) regulation of transcription at the end of mitosis. In some cases, these transcription control systems also operate during the alternative form of cell division, meiosis.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009354
Author(s):  
Sergio Sarnataro ◽  
Andrea Riba ◽  
Nacho Molina

Proliferating cells experience a global reduction of transcription during mitosis, yet their cell identity is maintained and regulatory information is propagated from mother to daughter cells. Mitotic bookmarking by transcription factors has been proposed as a potential mechanism to ensure the reactivation of transcription at the proper set of genes exiting mitosis. Recently, mitotic transcription and waves of transcription reactivation have been observed in synchronized populations of human hepatoma cells. However, the study did not consider that mitotic-arrested cell populations progressively desynchronize leading to measurements of gene expression on a mixture of cells at different internal cell-cycle times. Moreover, it is not well understood yet what is the precise role of mitotic bookmarking on mitotic transcription as well as on the transcription reactivation waves. Ultimately, the core gene regulatory network driving the precise transcription reactivation dynamics remains to be identified. To address these questions, we developed a mathematical model to correct for the progressive desynchronization of cells and estimate gene expression dynamics with respect to a cell-cycle pseudotime. Furthermore, we used a multiple linear regression model to infer transcription factor activity dynamics. Our analysis allows us to characterize waves of transcription factor activities exiting mitosis and predict a core gene regulatory network responsible of the transcription reactivation dynamics. Moreover, we identified more than 60 transcription factors that are highly active during mitosis and represent new candidates of mitotic bookmarking factors which could be relevant therapeutic targets to control cell proliferation.


2020 ◽  
Author(s):  
Sergio Sarnataro ◽  
Andrea Riba ◽  
Nacho Molina

AbstractProliferating cells experience a global reduction of transcription during mitosis, yet their cell identity is maintained and regulatory information is propagated from mother to daughter cells. Mitotic bookmarking by transcription factors has been proposed as a potential mechanism to ensure the reactivation of transcription at the proper set of genes exiting mitosis. Recently, mitotic transcription and waves of transcription reactivation have been observed in synchronized populations of human hepatoma cells. However, the study did not consider that mitotic-arrested cell populations progressively desynchronize leading to measurements of gene expression on a mixture of cells at different internal cell-cycle times. Moreover, it is not well understood yet what is the precise role of mitotic bookmarking on mitotic transcription as well as on the transcription reactivation waves. Ultimately, the core gene regulatory network driving the precise transcription reactivation dynamics remains to be identified. To address these questions, we developed a mathematical model to correct for the progressive desynchronization of cells and estimate gene expression dynamics with respect to a cell-cycle pseudotime. Furthermore, we used a multiple linear regression model to infer transcription factor activity dynamics. Our analysis allows us to characterize waves of transcription factor activities exiting mitosis and identify a core gene regulatory network responsible of the transcription reactivation dynamics. Moreover, we identified more than 60 transcription factors that are highly active during mitosis and represent new candidates of mitotic bookmarking factors which could represent relevant therapeutic targets to control cell proliferation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalyan Mahapatra ◽  
Sujit Roy

AbstractAs like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 925
Author(s):  
Eva-Maria Faulhaber ◽  
Tina Jost ◽  
Julia Symank ◽  
Julian Scheper ◽  
Felix Bürkel ◽  
...  

(1) Kinase inhibitors (KI) targeting components of the DNA damage repair pathway are a promising new type of drug. Combining them with ionizing radiation therapy (IR), which is commonly used for treatment of head and neck tumors, could improve tumor control, but could also increase negative side effects on surrounding normal tissue. (2) The effect of KI of the DDR (ATMi: AZD0156; ATRi: VE-822, dual DNA-PKi/mTORi: CC-115) in combination with IR on HPV-positive and HPV-negative HNSCC and healthy skin cells was analyzed. Cell death and cell cycle arrest were determined using flow cytometry. Additionally, clonogenic survival and migration were analyzed. (3) Studied HNSCC cell lines reacted differently to DDRi. An increase in cell death for all of the malignant cells could be observed when combining IR and KI. Healthy fibroblasts were not affected by simultaneous treatment. Migration was partially impaired. Influence on the cell cycle varied between the cell lines and inhibitors; (4) In conclusion, a combination of DDRi with IR could be feasible for patients with HNSCC. Side effects on healthy cells are expected to be limited to normal radiation-induced response. Formation of metastases could be decreased because cell migration is impaired partially. The treatment outcome for HPV-negative tumors tends to be improved by combined treatment.


Sign in / Sign up

Export Citation Format

Share Document