scholarly journals DAPL1 is a novel regulator of testosterone production in Leydig cells of mouse testis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong-bin Chen ◽  
Jorge Carlos Pineda Garcia ◽  
Shinako Arizono ◽  
Tomoki Takeda ◽  
Ren-shi Li ◽  
...  

AbstractLeydig cells in the testes produce testosterone in the presence of gonadotropins. Therefore, male testosterone levels must oscillate within a healthy spectrum, given that elevated testosterone levels augment the risk of cardiovascular disorders. We observed that the expression of death-associated protein-like 1 (DAPL1), which is involved in the early stages of epithelial differentiation and apoptosis, is considerably higher in the testes of sexually mature mice than in other tissues. Accordingly, Dapl1-null mice were constructed to evaluate this variation. Notably, in these mice, the testicular levels of steroidogenic acute regulatory protein (StAR) and serum testosterone levels were significantly elevated on postnatal day 49. The findings were confirmed in vitro using I-10 mouse testis-derived tumor cells. The in vivo and in vitro data revealed the DAPL1-regulated the expression of StAR involving altered transcription of critical proteins in the protein kinase A and CREB/CREM pathways in Leydig cells. The collective findings implicate DAPL1 as an important factor for steroidogenesis regulation, and DAPL1 deregulation may be related to high endogenous levels of testosterone.

2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


2014 ◽  
Vol 8 (2) ◽  
pp. 247-253
Author(s):  
Liuping Zhang ◽  
Genbao Shao ◽  
Yaoqian Pan

AbstractBackground: Daidzein is a major isoflavone in soybeans. Several in vivo studies have showed that daidzein can affect immature male testosterone production. However, whether daidzein has direct action on immature male testis is unknown.Objective: We investigated the effects of daidzein on testosterone secretion in 3-day-old and 21-day-old mouse Leydig cells with organotypic culture model.Materials and Methods: The testes were exposed to different concentrations (10-7to 10-4M) of daidzein for 72 h with medium changed every 24 h. From 72 to 75 h of culture, 100 ng/ml human chorionic gonadotropin (hCG) was added. The testosterone production was determined, and the related mechanisms of daidzein action were also evaluated by measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD-1) involved in testosterone biosynthesis.Results: The results revealed that in the presence of 100 ng/ml hCG, 10-7to 10-5M daidzein had no significant effect on testosterone secretion in cultured 3-day-old mouse testis. But 10-4M daidzein significantly increased testosterone concentration (p < 0.05). Daidzein in range of studied doses had no obvious influence on testosterone production in cultured 21-day-old mouse testis. RT-PCR results showed that 10-4M daidzein had obvious influence on the mRNA levels of StAR, P450scc and 3β-HSD-1 in cultured 3-day-old mouse testis (p < 0.05).Conclusion: These results suggest that daidzein mainly influences neonatal mouse testis function, and the influence is partially related to the upregulation of StAR, P450scc, and 3β-HSD-1 mRNA levels.


Endocrinology ◽  
2000 ◽  
Vol 141 (11) ◽  
pp. 4000-4012 ◽  
Author(s):  
Karen Held Hales ◽  
Thorsten Diemer ◽  
Salil Ginde ◽  
Birinder K. Shankar ◽  
Maretha Roberts ◽  
...  

Abstract Immune activation results in the activation of adrenal steroidogenesis and inhibition of gonadal steroidogenesis. Previous studies indicated that these effects were caused primarily by activation and suppression of the secretion of ACTH and LH, respectively. However, other evidence indicated a direct effect of the immune system on the gonads. In this study, serum testosterone, quantitated by RIA after lipopolysaccharide injection, showed a significant decrease within 2 h. Parallel measurement of serum LH showed no change. There were no differences in LH receptor or cAMP produced in Leydig cells between vehicle- and lipopolysaccharide-injected mice. The 30-kDa form of the steroidogenic acute regulatory (StAR) protein was quantitated, by Western blot, in Leydig cells and was found to decrease in a time-dependent manner. No change in StAR protein messenger RNA (mRNA) was detected by Northern analysis during this time, nor were any changes found in the levels of mRNA for the steroidogenic enzymes P450scc, 3β-hydroxysteroid dehydrogenaseΔ 4-Δ5-isomerase, or P450c17. In the adrenal, StAR protein was increased, as was StAR protein mRNA. No changes were observed in the levels of mRNA for P450scc, 3β-hydroxysteroid dehydrogenaseΔ 4-Δ5-isomerase, or P450c21. Thus, although the mechanisms of regulation differ, changes in the levels of StAR protein are a sensitive indicator of the steroidogenic capacity of these two tissues.


Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4441-4446 ◽  
Author(s):  
Haolin Chen ◽  
June Liu ◽  
Lindi Luo ◽  
Barry R. Zirkin

Abstract The wealth of knowledge about the function and regulation of adult Leydig cells, the cells within the mammalian testis that produce testosterone, make these cells ideal for studying principles and mechanisms of aging. A hallmark of mammalian aging is decreased serum testosterone concentration. In the Brown Norway rat, this has been shown to be associated with the reduced ability of aged Leydig cells to produce testosterone in response to LH. Herein, we demonstrate that culturing the aged cells with dibutyryl cAMP, a membrane-permeable cAMP agonist that bypasses the LH receptor-adenlyly cyclase cascade, restores testosterone production to levels comparable to those of young cells and also restores steroidogenic acute regulatory protein and P450scc, the proteins involved in the rate-limiting steps of steroidogenesis. These results strongly suggest that signal transduction deficits are responsible for reduced steroidogenesis by aged Leydig cells and that bypassing signal transduction reverses the steroidogenic decline by the aged cells.


Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1891-1900 ◽  
Author(s):  
C. Torres-Farfan ◽  
N. Mendez ◽  
L. Abarzua-Catalan ◽  
N. Vilches ◽  
G. J. Valenzuela ◽  
...  

The adrenal gland in the adult is a peripheral circadian clock involved in the coordination of energy intake and expenditure, required for adaptation to the external environment. During fetal life, a peripheral circadian clock is present in the nonhuman primate adrenal gland. Whether this extends to the fetal adrenal gland like the rat is unknown. Here we explored in vivo and in vitro whether the rat fetal adrenal is a peripheral circadian clock entrained by melatonin. We measured the 24-h changes in adrenal content of corticosterone and in the expression of clock genes Per-2 and Bmal-1 and of steroidogenic acute regulatory protein (StAR), Mt1 melatonin receptor, and early growth response protein 1 (Egr-1) expression. In culture, we explored whether oscillatory expression of these genes persisted during 48 h and the effect of a 4-h melatonin pulse on their expression. In vivo, the rat fetal adrenal gland showed circadian expression of Bmal-1 and Per-2 in antiphase (acrophases at 2200 and 1300 h, respectively) as well as of Mt1 and Egr-1. This was accompanied by circadian rhythms of corticosterone content and of StAR expression both peaking at 0600 h. The 24-h oscillatory expression of Bmal-1, Per-2, StAR, Mt1, and Egr-1 persisted during 48 h in culture; however, the antiphase between Per-2 and Bmal-1 was lost. The pulse of melatonin shifted the acrophases of all the genes studied and restored the antiphase between Per-2 and Bmal-1. Thus, in the rat, the fetal adrenal is a strong peripheral clock potentially amenable to regulation by maternal melatonin.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiangcheng Zhan ◽  
Jingwei Zhang ◽  
Saiyang Li ◽  
Xiaolu Zhang ◽  
Linchao Li ◽  
...  

Abstract Background Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro. Results Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1. Conclusion MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.


1996 ◽  
Vol 150 (3) ◽  
pp. 431-443 ◽  
Author(s):  
M Jeyakumar ◽  
N R Moudgal

Abstract Antibodies to LH/chorionic gonadotrophin receptor (LH/CG-R; molecular weight 67 000), isolated in a homogenous state (established by SDS-PAGE and ligand blotting) from sheep luteal membrane using human CG (hCG)–Sepharose affinity chromatography, were raised in three adult male rabbits (R-I, R-II and R-III). Each of the rabbits received 20–30 μg of the purified receptor in Freund's complete adjuvant at a time. Primary immunization was followed by booster injection at intervals. Production of receptor antibodies was monitored by (1) determining the dilution of the serum (IgG fraction) that could specifically bind 50% of 125I-LH/CG-R added and (2) analysing sera for any change in testosterone levels. Following primary immunization and the first booster, all three rabbits exhibited a 2·5- to 6·0-fold increase in serum testosterone over basal levels and this effect was spread over a period of time (∼40 days) coinciding with the rise and fall of receptor antibodies. The maximal antibody titre (ED50) produced at this time ranged from 1:350 to 1:100 to below detectable limits for R-I, R-II and R-III respectively. Subsequent immunizations followed by the second booster resulted in a substantial increase in anti-body titre (ED50 of 1:5000) in R-I, but this was not accompanied by any change in serum testosterone over preimmune levels, suggesting that with the progress of immunization the character of the antibody produced had also changed. Two pools of antisera from R-I collected 10 days following the booster (at day 70 (bleed I) and day 290 (bleed II)) were used in further experiments. IgG isolated from bleed I but not from bleed II antiserum showed a dose-dependent stimulation of testosterone production by mouse Leydig cells in vitro, thus confirming the in vivo hormone-mimicking activity of antibodies generated during the early immunization phase. The IgG fractions from both bleeds were, however, capable of inhibiting (1) 125I-hCG binding to crude sheep luteal membrane (EC50 of 1:70 and 1:350 for bleed I and II antisera respectively) and (2) ovine LH-stimulated testosterone production by mouse Leydig cells in vitro, indicating the presence of antagonistic antibodies irrespective of the period of time during which the rabbits were immunized. The fact that bleed I-stimulated testosterone production could be inhibited in a dose-dependent manner by the addition of IgG from bleed II to the mouse Leydig cell in vitro assay system showed that the agonistic activity is intrinsic to the bleed I antibody. The receptor antibody (bleed II) was also capable of blocking LH action in vivo, as rabbits passively (for 24 h with LH/CG-R antiserum) as well as actively (for 430 days) immunized against LH/CG-R failed to respond to a bolus injection of LH (50 μg). At no time, however, was the serum testosterone reduced below the basal level. This study clearly shows that, unlike with LH antibody, attempts to achieve an LH deficiency effect in vivo by resorting to immunization with holo LH receptor is difficult, as receptor antibodies exhibit both hormone-mimicking (agonistic) as well as hormone-blocking (antagonistic) activities. Journal of Endocrinology (1996) 150, 431–443


1994 ◽  
Vol 267 (2) ◽  
pp. C570-C580 ◽  
Author(s):  
E. M. Perez-Armendariz ◽  
M. C. Romano ◽  
J. Luna ◽  
C. Miranda ◽  
M. V. Bennett ◽  
...  

Leydig cells are coupled in vivo by numerous gap junctions. In vivo and in vitro cells were immunolabeled by connexin 43 (Cx43) but not by Cx26 or Cx32 antibodies; immunoblotting confirmed specificity of Cx43 labeling. Pairs of Leydig cells dissociated from mouse testis were studied by dual whole cell voltage clamp, and a high incidence of dye (n = 20) and electrical coupling (n = 60; > 90%) was found. Coupling coefficients were near 1 and junctional conductance (gj) averaged 7.2 +/- 1.2 nS (SE, n = 40). Large transjunctional voltage (Vj) decreased gj; currents decayed exponentially with time constants of seconds that decreased at greater Vj. The residual conductance at large Vj was at least approximately 40% of the initial conductance. Exposure of cell pairs to saline solutions saturated with CO2 (n = 15) or containing 2 mM halothane (n = 15) or 3.5 mM heptanol (n = 15) rapidly and reversibly reduced gj. In eight cell pairs, gating of single junctional channels was observed during halothane-induced reduction in gj. Most gating events at Vj < 40 mV were fit by a Gaussian distribution with a mean of approximately 100 pS. With Vj > 40 mV, smaller transitions of approximately 30 pS were also recorded, and the frequency and duration of the approximately 100-pS transitions decreased. Also, approximately 70-pS transitions between 30- and 100-pS conductances were observed in the absence of 70-pS transitions to or from the baseline, indicating that the 30-pS conductance was a substate induced by large Vj.


2013 ◽  
Vol 217 (3) ◽  
pp. R47-R71 ◽  
Author(s):  
Daniel M Kelly ◽  
T Hugh Jones

Coronary heart disease is a leading cause of premature death in men. Epidemiological studies have shown a high prevalence of low serum testosterone levels in men with cardiovascular disease (CVD). Furthermore, a low testosterone level is associated in some but not in all observational studies with an increase in cardiovascular events and mortality. Testosterone has beneficial effects on several cardiovascular risk factors, which include cholesterol, endothelial dysfunction and inflammation: key mediators of atherosclerosis. A bidirectional relationship between low endogenous testosterone levels and concurrent illness complicates attempts to validate causality in this association and potential mechanistic actions are complex. Testosterone is a vasoactive hormone that predominantly has vasodilatory actions on several vascular beds, although some studies have reported conflicting effects. In clinical studies, acute and chronic testosterone administration increases coronary artery diameter and flow, improves cardiac ischaemia and symptoms in men with chronic stable angina and reduces peripheral vascular resistance in chronic heart failure. Although the mechanism of the action of testosterone on vascular tonein vivois not understood, laboratory research has found that testosterone is an L-calcium channel blocker and induces potassium channel activation in vascular smooth muscle cells. Animal studies have consistently demonstrated that testosterone is atheroprotective, whereas testosterone deficiency promotes the early stages of atherogenesis. The translational effects of testosterone betweenin vitroanimal and human studies, some of which have conflicting effects, will be discussed in this review. We review the evidence for a role of testosterone in vascular health, its therapeutic potential and safety in hypogonadal men with CVD, and some of the possible underlying mechanisms.


2008 ◽  
Vol 42 (2) ◽  
pp. 119-129 ◽  
Author(s):  
Luc J Martin ◽  
Jacques J Tremblay

The steroidogenic acute regulatory protein plays an essential role in steroid biosynthesis in steroidogenic cells. It is involved in the transport of cholesterol through the mitochondrial membrane where the first step of steroidogenesis occurs. Star gene expression in testicular Leydig cells is regulated by the pituitary LH through the cAMP signaling pathway. So far, several transcription factors have been implicated in the regulation of Star promoter activity in these cells. These include the nuclear receptors NUR77 and SF1, AP-1 family members (particularly c-JUN), GATA4, C/EBPβ, DLX5/6, and CREB. Some of these factors were also shown to act in a cooperative manner to further enhance Star promoter activity. Here, we report that NUR77 and c-JUN have additive effects on the Star promoter. These effects were abolished only when both elements, NUR77 at −95 bp and AP-1 at −78 bp, were mutated. Consistent with this, in vitro co-immunoprecipitation revealed that NUR77 and c-JUN interact and that this interaction is mediated through part of the ligand binding domain of NUR77. Furthermore, we found that SF1 could cooperate with c-JUN on the mouse Star promoter but this cooperation involved different regulatory elements. Collectively, our data not only provide new insights into the molecular mechanisms that control mouse Star transcription in Leydig cells but also reveal a novel mechanism for the regulation of NR4A1-dependent genes in tissues where NUR77 and c-JUN factors are co-expressed.


Sign in / Sign up

Export Citation Format

Share Document