scholarly journals Evaluation of antigenicity and nutritional properties of enzymatically hydrolyzed cow milk

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaona Liang ◽  
Guanlin Qian ◽  
Jing Sun ◽  
Mei Yang ◽  
Xinyang Shi ◽  
...  

AbstractWhile enzymatic hydrolysis is an effective method for lowering the antigenicity of cow milk (CM), research regarding the antigenicity and nutritional traits of CM hydrolysate is limited. Here, we evaluated the protein content, amino acid composition, sensory traits, color, flow behavior, and antigenicity of CM following enzymatic hydrolysis. The results showed that enzymatic hydrolysis increased the degree of hydrolysis, destroyed allergenic proteins, including casein, β-lactoglobulin, and ɑ-lactalbumin, and significantly increased the content of free amino acids and nutritional quality. In particular, the antigenicity of CM was significantly reduced from 44.05 to 86.55% (P < 0.5). Simultaneously, the taste, color, and flow behavior of CM were altered, the sweetness and richness intensity decreased significantly (P < 0.5), and astringency and bitterness were produced. A slightly darker and more yellow color was observed in CM hydrolysate. In addition, apparent viscosity decreased and shear stress significantly increased with increasing shear rate intensity. The results will provide a solid theoretical foundation for the development of high-quality hypoallergenic dairy products.

2014 ◽  
Vol 3 (6) ◽  
pp. 54
Author(s):  
Dimitris Petridis ◽  
Georgia Dimitreli ◽  
Kalliopi Vlahvei ◽  
Christodoulos Deligeorgakis

<p>The physicochemical, rheological and sensory (objective and hedonic) properties of stirred yogurt made from buffalo and cow milk mixtures enriched with Sodium Caseinates (SCN) were evaluated. Five different milk mixtures (buffalo:cow; 0:100, 25:75, 50:50, 75:25, 100:0) with or without the addition of 1% SCN were fermented so as to produce 10 different yogurt samples. According to the results, SCN addition increased the brightness (L*), the elastic behavior, the viscosity (instrumental and sensory) and the flow behavior index (n), while it reduced the yellow color intensity (b*) of yogurt samples. Addition of milk affected significantly all the instrumental variables apart from the green color intensity (a*) and so happened but sparsely with the interactive effects between milk mixture and SCN addition. Redundancy analysis was proved a successful tool to elucidate the complex physicochemical, rheological and sensory profile of the stirred yogurt samples. Loss tanget (tan ?) and b* were indicative for high cow milk concentrations and the rest of attributes fashion with high buffalo milk concentrations, apart from n which favored samples with high cow milk enrichment and SCN addition. Panelists prefered adequately a stirred yogurt rich in buffalo milk concentration (75-100%) and low in cow milk (0-25%), enriched with SCN, with texture perceived as adequate fatty and viscous.</p>


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2685
Author(s):  
Abir Boukil ◽  
Véronique Perreault ◽  
Julien Chamberland ◽  
Samir Mezdour ◽  
Yves Pouliot ◽  
...  

Edible insects have garnered increased interest as alternative protein sources due to the world’s growing population. However, the allergenicity of specific insect proteins is a major concern for both industry and consumers. This preliminary study investigated the capacity of high hydrostatic pressure (HHP) coupled to enzymatic hydrolysis by Alcalase® or pepsin in order to improve the in vitro digestion of mealworm proteins, specifically allergenic proteins. Pressurization was applied as pretreatment before in vitro digestion or, simultaneously, during hydrolysis. The degree of hydrolysis was compared between the different treatments and a mass spectrometry-based proteomic method was used to determine the efficiency of allergenic protein hydrolysis. Only the Alcalase® hydrolysis under pressure improved the degree of hydrolysis of mealworm proteins. Moreover, the in vitro digestion of the main allergenic proteins was increased by pressurization conditions that were specifically coupled to pepsin hydrolysis. Consequently, HHP-assisted enzymatic hydrolysis represents an alternative strategy to conventional hydrolysis for generating a large amount of peptide originating from allergenic mealworm proteins, and for lowering their immunoreactivity, for food, nutraceutical, and pharmaceutical applications.


2018 ◽  
Vol 55 (2) ◽  
pp. 156
Author(s):  
B.P. Pushpa ◽  
G.S. Bhat ◽  
H.M. Jayaprakasha

The allergy due to different fractions of milk protein was estimated by the level of milk specific Ig E blood sera of children suspected for milk allergy with a history of symptoms such as wheezing, diarrhoea or dermatitis. It was observed that among the milk proteins β - lactoglobulin of whey protein is the most potent allergen. Effect of heat treatment and enzymatic hydrolysis on reduction in β - lactoglobulin allergenicity was investigated by inhibition ELISA while heat treatment could reduce the allergenicity only to the extent of 12.5%, enzymatic hydrolysis could reduce the allergenicity significantly. The extent of hydrolysis as well as the enzyme used had significant role in reduction of milk protein allergenicity. The degree of hydrolysis corresponded well with the reduction of milk protein allergenicity. Though chymotrypsin was effective in hydrolyzing β - lactoglobulin, neutrase was more effective in reducing the allergenicity by 52% even at lower degree of hydrolysis. The combination of chymotrypsin and neutrase was found to be more useful in hydrolysis as well as reduction in allergenicity of the protein.


LWT ◽  
2021 ◽  
pp. 111994
Author(s):  
Xiaona Liang ◽  
Jiao Cheng ◽  
Jing Sun ◽  
Mei Yang ◽  
Xue Luo ◽  
...  

2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Jin Huang ◽  
Ping Wang ◽  
Guochao Wang

Magnetorheological (MR) disk-type isolating dampers are the semi-active control devices that use MR fluids to produce controllable squeezing force. In this paper, the analytical endeavor into the fluid dynamic modeling of an MR isolating damper is reported. The velocity and pressure distribution of an MR fluid operating in an axisymmetric squeeze model are analytically solved using a biviscosity constitutive model. Analytical solutions for the flow behavior of MR fluid flowing through the parallel channel are obtained. The equation for the squeezing force is derived to provide the theoretical foundation for the design of the isolating damper. The result shows that with the increase of the applied magnetic field strength, the squeezing force is increased.


2010 ◽  
Vol 121 (2) ◽  
pp. 457-467 ◽  
Author(s):  
Seronei Chelulei Cheison ◽  
Meike Schmitt ◽  
Elena Leeb ◽  
Thomas Letzel ◽  
Ulrich Kulozik

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 101 ◽  
Author(s):  
Guowei Shu ◽  
Jie Huang ◽  
Chunju Bao ◽  
Jiangpeng Meng ◽  
He Chen ◽  
...  

Angiotensin I-converting enzyme (ACE) peptides are bioactive peptides that have important value in terms of research and application in the prevention and treatment of hypertension. While widespread literature is concentrated on casein or whey protein for production of ACE-inhibitory peptides, relatively little information is available on selecting the proper proteases to hydrolyze the protein. In this study, skimmed cow and goat milk were hydrolyzed by four commercial proteases, including alkaline protease, trypsin, bromelain, and papain. Angiotensin I-converting enzyme-inhibitory peptides and degree of hydrolysis (DH) of hydrolysates were measured. Moreover, we compared the difference in ACE-inhibitory activity between cow and goat milk. The results indicated that the DH increased with the increase in hydrolysis time. The alkaline protease-treated hydrolysates exhibited the highest DH value and ACE-inhibitory activity. Additionally, the ACE-inhibitory activity of hydrolysates from goat milk was higher than that of cow milk-derived hydrolysates. Therefore, goat milk is a good source to obtain bioactive peptides with ACE-inhibitory activity, as compared with cow milk. A proper enzyme to produce ACE-inhibitory peptides is important for the development of functional milk products and will provide the theoretical basis for industrial production.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950121 ◽  
Author(s):  
TONGJUN MIAO ◽  
AIMIN CHEN ◽  
YAN XU ◽  
SUJUN CHENG ◽  
BOMING YU

The transfer of fluids from porous matrix to fracture is a key issue to accurately predict the fluid flow behavior in porous–fracture media. In this work, to take into account the transfer of fluids, the analytical model of dimensionless permeability is proposed based on the fractal geometry theory for porous media. The proposed model is expressed as a function of microstructural parameters of the porous matrix and fracture, such as the pore area fractal dimension [Formula: see text], fractal dimension [Formula: see text] for tortuosity of tortuous capillaries, the ratio [Formula: see text] of the maximum pore size in porous matrix to fracture aperture, as well as the ratio [Formula: see text] of the pressure difference along the fracture to that along the porous matrix layers. The model reveals that the ratios [Formula: see text] and [Formula: see text] have significant influences on the permeability contribution from the porous matrix to the seepage behavior of the fracture. While the contribution of porosity of leak-wall porous surface of the fracture to the permeability is less than 10%. The present results may provide an important theoretical foundation for exploration of petroleum, gas and geothermal energy extraction systems.


Author(s):  
Gaukhar S. Konuspayeva

If gross composition of camel milk is roughly comparable to cow milk, fine composition shows significant differences explaining potential health benefit for regular consumers. The main particularities of camel milk are (1) better atherogenicity index thanks to its higher proportion of mono-unsaturated and polyunsaturated fatty acids compared to other milks, (2) different proportion of caseins than cow milk leading to difficult clotting, (3) lack of β-lactoglobulin, often responsible for cow milk allergy, (4) slightly higher concentration in antibacterial and immunity support proteins with higher bio-activity than in other milk, (5) presence of WAP (whey acidic protein) and PGRP (peptidoglycan-recognition protein) not available in cow milk, (6) probable efficient insulin for supporting better glycemia regulation, (7) better metabolization of lactose leading to lower intolerance in consumers, (8) richness in sodium and iron compared to other milks, and (9) contrasted values of vitamins (less vitamins B, high quantity of vitamins C and D). This chapter explores camel milk composition and nutritional value.


Sign in / Sign up

Export Citation Format

Share Document