scholarly journals Mental models use common neural spatial structure for spatial and abstract content

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Katherine L. Alfred ◽  
Andrew C. Connolly ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

AbstractMental models provide a cognitive framework allowing for spatially organizing information while reasoning about the world. However, transitive reasoning studies often rely on perception of stimuli that contain visible spatial features, allowing the possibility that associated neural representations are specific to inherently spatial content. Here, we test the hypothesis that neural representations of mental models generated through transitive reasoning rely on a frontoparietal network irrespective of the spatial nature of the stimulus content. Content within three models ranges from expressly visuospatial to abstract. All mental models participants generated were based on inferred relationships never directly observed. Here, using multivariate representational similarity analysis, we show that patterns representative of mental models were revealed in both superior parietal lobule and anterior prefrontal cortex and converged across stimulus types. These results support the conclusion that, independent of content, transitive reasoning using mental models relies on neural mechanisms associated with spatial cognition.

2019 ◽  
Author(s):  
Katherine L Alfred ◽  
Andrew C Connolly ◽  
Joshua S. Cetron ◽  
David J. M. Kraemer

Mental models provide a cognitive framework that allows for organizing and manipulating information while reasoning about the world. Deductive reasoning with mental models is supported by a frontoparietal network, including regions of anterior prefrontal cortex associated with relational integration, and superior parietal regions associated with spatial cognition. Based in part on this evidence, mental models are often considered spatial representations. However, studies of transitive reasoning often rely on direct perception of stimuli that are inherently spatial in content, leaving open the possibility that the associated neural representations are specific to content that is inherently spatial or concretely perceivable. Here we directly test the hypothesis that the neural representation of mental models generated through transitive reasoning relies on this same frontoparietal network irrespective of the spatial nature of the stimulus content. Specifically, participants generated three distinct mental models through a transitive reasoning task. The content within the three models ranges from expressly visuospatial to entirely abstract. Moreover, all of the mental models participants generated were based on inferred relationships that were never directly observed. Multivariate representational similarity analysis was used to assess the correlation between these to-be-learned mental models and the patterns of neural activity elicited while viewing individual stimuli after training. Patterns representative of the mental models were revealed in both superior parietal lobule and anterior prefrontal cortex. Notably, these neural patterns were highly convergent across stimulus types. These results support the conclusion that, independent of content, relational reasoning using mental models relies on neural mechanisms associated with spatial processing.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Erik L Meijs ◽  
Pim Mostert ◽  
Heleen A Slagter ◽  
Floris P de Lange ◽  
Simon van Gaal

Abstract Subjective experience can be influenced by top-down factors, such as expectations and stimulus relevance. Recently, it has been shown that expectations can enhance the likelihood that a stimulus is consciously reported, but the neural mechanisms supporting this enhancement are still unclear. We manipulated stimulus expectations within the attentional blink (AB) paradigm using letters and combined visual psychophysics with magnetoencephalographic (MEG) recordings to investigate whether prior expectations may enhance conscious access by sharpening stimulus-specific neural representations. We further explored how stimulus-specific neural activity patterns are affected by the factors expectation, stimulus relevance and conscious report. First, we show that valid expectations about the identity of an upcoming stimulus increase the likelihood that it is consciously reported. Second, using a series of multivariate decoding analyses, we show that the identity of letters presented in and out of the AB can be reliably decoded from MEG data. Third, we show that early sensory stimulus-specific neural representations are similar for reported and missed target letters in the AB task (active report required) and an oddball task in which the letter was clearly presented but its identity was task-irrelevant. However, later sustained and stable stimulus-specific representations were uniquely observed when target letters were consciously reported (decision-dependent signal). Fourth, we show that global pre-stimulus neural activity biased perceptual decisions for a ‘seen’ response. Fifth and last, no evidence was obtained for the sharpening of sensory representations by top-down expectations. We discuss these findings in light of emerging models of perception and conscious report highlighting the role of expectations and stimulus relevance.


1990 ◽  
Vol 64 (1) ◽  
pp. 164-178 ◽  
Author(s):  
G. E. Alexander ◽  
M. D. Crutcher

1. This study was designed to determine whether the supplementary motor area (SMA), the primary motor cortex (MC), and the putamen, all of which are components of the basal ganglia-thalamocortical “motor circuit,” contain neural representations of the target or goal of a movement, independent of specific features of the movement itself. Four rhesus monkeys were trained to perform two visuomotor delayed step-tracking tasks in which the subject used a cursor to track targets on a display screen by making flexion and extension movements of the elbow. Single-cell activity was recorded from the SMA, MC, and putamen while the monkeys performed the two tasks. In the Standard task, the cursor and the forearm moved in the same direction. The Cursor/Limb Inversion task was identical to the Standard task except that there was an inverse relationship between the directions of movement of the forearm and cursor. Together, these tasks dissociated the spatial features of the target or goal of the movement from those of the movement itself. Both tasks also included features that made it possible to distinguish neuronal activity related to the preparation for movement from that related to movement execution. A total of 554 directionally selective, task-related neurons were tested with both tasks (SMA, 207; MC, 198; putamen, 149). 2. Two types of directionally selective preparatory activity were seen in each motor area. Cells with target-dependent preparatory activity showed selective discharge prior to all preplanned movements of the cursor toward one of the side targets (right or left), irrespective of whether the limb movement involved extension or flexion of the elbow. Comparable proportions of target-dependent preparatory cells were seen in the SMA (36%), MC (40%), and putamen (38%). Cells with limb-dependent preparatory activity showed selective discharge prior to all preplanned elbow movements in a particular direction (extension or flexion), irrespective of whether the target to which the cursor was moved was located on the right or left side of the display. The SMA contained a higher proportion of limb-dependent preparatory cells (40%) than either MC (15%) or putamen (9%). 3. Two types of directionally selective movement-related activity were also seen in each motor area.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Author(s):  
Wei-Chun Wang ◽  
Erik A. Wing ◽  
David L.K. Murphy ◽  
Bruce M. Luber ◽  
Sarah H. Lisanby ◽  
...  

AbstractBrain stimulation technologies have seen increasing application in basic science investigations, specifically towards the goal of improving memory functioning. However, proposals concerning the neural mechanisms underlying cognitive enhancement often rely on simplified notions of excitation and, most applications examining the effects of transcranial magnetic stimulation (TMS) on functional neuroimaging measures have been limited to univariate analyses of brain activity. We present here analyses using representational similarity analysis (RSA) and encoding-retrieval similarity (ERS) analysis in order to quantify the effect of TMS on memory representations. To test whether an increase in local excitability in PFC can have measurable influences on upstream representations in earlier temporal memory regions, we compared 1Hz and 5Hz stimulation to the left dorsolateral PFC. We found that 10 minutes of 5Hz rTMS, relative to 1Hz, had multiple effects on neural representations: 1) greater RSA during both encoding and retrieval, 2) greater ERS across all items, and, critically, 3) increasing ERS in MTL with increasing univariate activity in DLPFC, and greater functional connectivity for hits than misses between these regions. These results provide the first evidence of rTMS enhancing semantic representations and strengthen the idea that rTMS may affect the reinstatement of previously experienced events in upstream regions.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Jason P Gallivan ◽  
D Adam McLean ◽  
Kenneth F Valyear ◽  
Jody C Culham

Sophisticated tool use is a defining characteristic of the primate species but how is it supported by the brain, particularly the human brain? Here we show, using functional MRI and pattern classification methods, that tool use is subserved by multiple distributed action-centred neural representations that are both shared with and distinct from those of the hand. In areas of frontoparietal cortex we found a common representation for planned hand- and tool-related actions. In contrast, in parietal and occipitotemporal regions implicated in hand actions and body perception we found that coding remained selectively linked to upcoming actions of the hand whereas in parietal and occipitotemporal regions implicated in tool-related processing the coding remained selectively linked to upcoming actions of the tool. The highly specialized and hierarchical nature of this coding suggests that hand- and tool-related actions are represented separately at earlier levels of sensorimotor processing before becoming integrated in frontoparietal cortex.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Li ◽  
Nan Liu ◽  
You Li ◽  
Ralph Weidner ◽  
Gereon R. Fink ◽  
...  

Abstract An object’s location can be represented either relative to an observer’s body effectors (egocentric reference frame) or relative to another external object (allocentric reference frame). In non-spatial tasks, an object’s task-irrelevant egocentric position conflicts with the side of a task-relevant manual response, which defines the classical Simon effect. Growing evidence suggests that the Simon effect occurs not only based on conflicting positions within the egocentric but also within the allocentric reference frame. Although neural mechanisms underlying the egocentric Simon effect have been extensively researched, neural mechanisms underlying the allocentric Simon effect and their potential interaction with those underlying its egocentric variant remain to be explored. In this fMRI study, spatial congruency between the task-irrelevant egocentric and allocentric target positions and the task-relevant response hand was orthogonally manipulated. Behaviorally, a significant Simon effect was observed for both reference frames. Neurally, three sub-regions in the frontoparietal network were involved in different aspects of the Simon effect, depending on the source of the task-irrelevant object locations. The right precentral gyrus, extending to the right SMA, was generally activated by Simon conflicts, irrespective of the spatial reference frame involved, and showed no additive activity to Simon conflicts. In contrast, the right postcentral gyrus was specifically involved in Simon conflicts induced by task-irrelevant allocentric, rather than egocentric, representations. Furthermore, a right lateral frontoparietal network showed increased neural activity whenever the egocentric and allocentric target locations were incongruent, indicating its functional role as a mismatch detector that monitors the discrepancy concerning allocentric and egocentric object locations.


2011 ◽  
Vol 105 (4) ◽  
pp. 1722-1731 ◽  
Author(s):  
Ian S. Howard ◽  
James N. Ingram ◽  
Daniel M. Wolpert

Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system.


2011 ◽  
Vol 23 (3) ◽  
pp. 631-644 ◽  
Author(s):  
Joseph L. Brooks ◽  
Stephen E. Palmer

Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure–ground organization involves competitive processes that can affect the latency of figural assignment.


2019 ◽  
Author(s):  
David Ottenheimer ◽  
Karen Wang ◽  
Alexandria Haimbaugh ◽  
Patricia H. Janak ◽  
Jocelyn M. Richard

AbstractA critical area of inquiry in the neurobiology of alcohol abuse is the neural mechanisms by which cues gain the ability to elicit alcohol use. We previously showed that cue-evoked activity in rat ventral pallidum (VP) robustly encodes the value of cues trained under both Pavlovian and instrumental contingencies, despite a stronger relationship between cue-evoked responses and behavioral latency after instrumental training. Here, we assessed VP neural representations of cue value in rats trained with a Pavlovian conditioned stimulus (CS+) that predicted alcohol delivery, and in rats trained with an instrumental discriminative stimulus (DS) that predicted alcohol availability if the rat entered the reward port during the cue. We also examined the impact of alcohol exposure itself on the integrity of this type of signaling in rats trained with sucrose. Decoding of cue value based on VP firing was blunted for an alcohol CS+ versus an alcohol DS, as well as in comparison to a sucrose DS or CS+. Further, homecage alcohol exposure had opposing effects on VP encoding of cue value for a sucrose DS versus a sucrose CS+, enhancing decoding accuracy for the DS and reducing decoding accuracy for the CS+. These findings suggest that problem alcohol seeking may result from biased engagement of specific reward-related processes via changes in VP signaling.


Sign in / Sign up

Export Citation Format

Share Document