scholarly journals Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Qi Zhang ◽  
Zhenyan Zhang ◽  
Tao Lu ◽  
W. J. G. M. Peijnenburg ◽  
Michael Gillings ◽  
...  

AbstractCyanobacterial blooms are a global ecological problem that directly threatens human health and crop safety. Cyanobacteria have toxic effects on aquatic microorganisms, which could drive the selection for resistance genes. The effect of cyanobacterial blooms on the dispersal and abundance of antibiotic-resistance genes (ARGs) of concern to human health remains poorly known. We herein investigated the effect of cyanobacterial blooms on ARG composition in Lake Taihu, China. The numbers and relative abundances of total ARGs increased obviously during a Planktothrix bloom. More pathogenic microorganisms were present during this bloom than during a Planktothrix bloom or during the non-bloom period. Microcosmic experiments using additional aquatic ecosystems (an urban river and Lake West) found that a coculture of Microcystis aeruginosa and Planktothrix agardhii increased the richness of the bacterial community, because its phycosphere provided a richer microniche for bacterial colonization and growth. Antibiotic-resistance bacteria were naturally in a rich position, successfully increasing the momentum for the emergence and spread of ARGs. These results demonstrate that cyanobacterial blooms are a crucial driver of ARG diffusion and enrichment in freshwater, thus providing a reference for the ecology and evolution of ARGs and ARBs and for better assessing and managing water quality.

mSystems ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Zwanzig ◽  
Ellie Harrison ◽  
Michael A. Brockhurst ◽  
James P. J. Hall ◽  
Thomas U. Berendonk ◽  
...  

ABSTRACTThe global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics. Whereas chromosomal mutations are inherited vertically through bacterial fission, plasmid mutations can be inherited both vertically and horizontally and potentially reduce the initial cost of the plasmid in new host cells. Here we show using mathematical models and simulations that the dynamics of plasmids depends critically on the genomic location of the compensatory mutation. We demonstrate that plasmid-located compensatory evolution is better at enhancing plasmid persistence, even when its effects are smaller than those provided by chromosomal compensation. Moreover, either type of compensatory evolution facilitates the survival of resistance plasmids at low drug concentrations. These insights contribute to an improved understanding of the conditions and mechanisms driving the spread and the evolution of antibiotic resistance plasmids.IMPORTANCEUnderstanding the evolutionary forces that maintain antibiotic resistance genes in a population, especially when antibiotics are not used, is an important problem for human health and society. The most common platform for the dissemination of antibiotic resistance genes is conjugative plasmids. Experimental studies showed that mutations located on the plasmid or the bacterial chromosome can reduce the costs plasmids impose on their hosts, resulting in antibiotic resistance plasmids being maintained even in the absence of antibiotics. While chromosomal mutations are only vertically inherited by the daughter cells, plasmid mutations are also provided to bacteria that acquire the plasmid through conjugation. Here we demonstrate how the mode of inheritance of a compensatory mutation crucially influences the ability of plasmids to spread and persist in a bacterial population.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhongli Chen ◽  
Jinsong Guo ◽  
Yanxue Jiang ◽  
Ying Shao

AbstractThe issue of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has created enormous threat to global health. In an effort to contain the spread of COVID-19, a huge amount of disinfectants and antibiotics have been utilized on public health. Accordingly, the concentration of disinfectants and antibiotics is increasing rapidly in various environments, including wastewater, surface waters, soils and sediments. The aims of this study were to analyze the potential ecological environment impacts of disinfectants and antibiotics by summarizing their utilization, environmental occurrence, distribution and toxicity. The paper highlights the promoting effects of disinfectants and antibiotics on antibiotic resistance genes (ARGs) and even antibiotic resistant bacteria (ARB). The scientific evidences indicate that the high concentration and high dose of disinfectants and antibiotics promote the evolution toward antimicrobial resistance through horizontal gene transformation and vertical gene transformation, which threaten human health. Further concerns should be focused more on the enrichment, bioaccumulation and biomagnification of disinfectants, antibiotics, antibiotic resistance genes (ARGs) and even antibiotic resistant bacteria (ARB) in human bodies.


2020 ◽  
Vol 7 (4) ◽  
pp. 1214-1224 ◽  
Author(s):  
Xue Han ◽  
Peng Lv ◽  
Lu-Guang Wang ◽  
Fei Long ◽  
Xiao-Lin Ma ◽  
...  

The spread of antibiotic resistance genes (ARGs) in the environment has aroused growing concern for human health and ecological safety.


2020 ◽  
Vol 266 ◽  
pp. 115260 ◽  
Author(s):  
Shaqiu Zhang ◽  
Muhammad Abbas ◽  
Mujeeb Ur Rehman ◽  
Yahui Huang ◽  
Rui Zhou ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4989 ◽  
Author(s):  
Christophe Paul ◽  
Zhanna Bayrychenko ◽  
Thomas Junier ◽  
Sevasti Filippidou ◽  
Karin Beck ◽  
...  

Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination oftet(W) andsul1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genusClostridiumwas identified as a potential specific vector for the dissemination oftet(W), due to a strong correlation withtet(W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment.


2019 ◽  
Author(s):  
Chengzhen L. Dai ◽  
Claire Duvallet ◽  
An Ni Zhang ◽  
Mariana G. Matus ◽  
Newsha Ghaeli ◽  
...  

AbstractThe spread of bacterial antibiotic resistance across human and environmental habitats is a global public health challenge. Wastewater has been implicated as a major source of antibiotic resistance in the environment, as it carries resistant bacteria and resistance genes from humans into natural ecosystems. However, different wastewater environments and antibiotic resistance genes in wastewater do not all present the same level of risk to human health. In this study, we investigate the public health relevance of antibiotic resistance found in wastewater by combining metagenomic sequencing with risk prioritization of resistance genes, analyzing samples across urban sewage system environments in multiple countries. We find that many of the resistance genes commonly found in wastewater are not readily present in humans. Ranking antibiotic resistance genes based on their potential pathogenicity and mobility reveals that most of the resistance genes in wastewater are not clinically relevant. Additionally, we show that residential wastewater resistomes pose greater risk to human health than those in wastewater treatment plant samples, and that residential wastewater can be as risky as hospital effluent. Across countries, differences in antibiotic resistance in residential wastewater can, in some cases, reflect differences in antibiotic drug consumption. Finally, we find that the flow of antibiotic resistance genes is influenced by geographical distance and environmental selection. Taken together, we demonstrate how different analytical approaches can provide greater insights into the public health relevance of antibiotic resistance in wastewater.


2019 ◽  
Vol 96 (2) ◽  
pp. 124-127
Author(s):  
Victor V. Tets ◽  
G. V. Tets ◽  
K. M. Kardava

This work presents results of the study on the environment prevalence of spores of aerobic bacteria, which are of potential danger to human health. The investigation of swabs from handles of supermarket trolleys revealed on their surface the presence of a large number of spores of unrelated pathogenic bacteria carrying as antibiotic resistance genes and the origin of genes protected by bacterial spores from harmful environmental conditions as well. The high resistance of bacterial spores to antiseptics and disinfectants can be considered as the reason for the their accumulation in the environment.


Sign in / Sign up

Export Citation Format

Share Document