scholarly journals Interband plasmon polaritons in magnetized charge-neutral graphene

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
T. M. Slipchenko ◽  
J.-M. Poumirol ◽  
A. B. Kuzmenko ◽  
A. Yu. Nikitin ◽  
L. Martín-Moreno

AbstractStudying the collective excitations in charge neutral graphene (CNG) has recently attracted a great interest because of unusual mechanisms of the charge carrier dynamics. The latter can play a crucial role for formation of recently observed in twisted bilayer CNG graphene plasmon polaritons (GPPs) associated with the interband transitions between the flat electronic bands. Besides, GPPs in CNG can be a tool providing insights into various quantum phenomena in CNG via optical experiments. However, the properties of interband GPPs in CNG are not known, even in the simplest configurations. Here, we show that magnetically-biased single-layer CNG can support interband GPPs of both transverse magnetic and transverse electric polarizations (particularly, at zero temperature). GPPs exist inside the absorption bands originating from the electronic transitions between Landau levels and are tunable by the magnetic field. We place our study into the context of potential near-field and far-field optical experiments.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Lidan Zhou ◽  
Mingcheng Panmai ◽  
Jin Xiang ◽  
Sheng Lan

Abstract We investigate numerically and experimentally the optical properties of the transverse electric (TE) waves supported by a dielectric-metal heterostructure. They are considered as the counterparts of the surface plasmon polaritons (i.e., the transverse magnetic (TM) waves) which have been extensively studied in the last several decades. We show that TE waves with resonant wavelengths in the visible light spectrum can be excited in a dielectric-metal heterostructure when the optical thickness of the dielectric layer exceeds a critical value. We reveal that the electric and magnetic field distributions for the TE waves are spatially separated, leading to higher quality factors or narrow linewidths as compared with the TM waves. We calculate the thickness, refractive index and incidence angle dispersion relations for the TE waves supported by a dielectric-metal heterostructure. In experiments, we observe optical resonances with linewidths as narrow as ∼10 nm in the reflection or scattering spectra of the TE waves excited in a Si3N4/Ag heterostructure. Finally, we demonstrate the applications of the lowest-order TE wave excited in a Si3N4/Ag heterostructure in optical display with good chromaticity and optical sensing with high sensitivity.


2016 ◽  
Vol 30 (19) ◽  
pp. 1650120 ◽  
Author(s):  
M. Bordag ◽  
I. G. Pirozhenko

Using the recently developed polarization tensor in [Formula: see text] dimensions for the electronic excitations of graphene, we investigate the influence of temperature on the surface plasmons on graphene. We consider nonzero mass gap, but zero chemical potential. Plasmons may exist for both polarizations, transverse electric (TE) and transverse magnetic (TM), of the electromagnetic field. For TE, the momentum region, where the dispersion function is real, appears bounded from below, whereas for TM it is bounded from above. We discuss the similarities of these features with those found previously in the case with nonzero chemical potential, but zero temperature.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2063 ◽  
Author(s):  
Tian Sang ◽  
Jian Gao ◽  
La Wang ◽  
Honglong Qi ◽  
Xin Yin ◽  
...  

A dual-band terahertz (THz) absorber using the periodic cross-shaped graphene arrays is presented. It is shown that the dual-band light absorption enhancement of graphene results from the edge graphene plasmon (EGP) resonance, and the locations of the two absorption peaks can be precisely estimated by using the Fabry-Pérot (F-P) cavity model. Slight residual reflection remains at the two absorption peaks because the input impedance of the cross-arm cannot be perfectly matched with the free space impedance. In addition, the locations of the two absorption bands can be simultaneously tuned by changing the Fermi level of graphene, and they can be independently tuned by changing the width or the length of the cross-arm of graphene. Excellent angle-insensitivity dual-band absorption enhancement of graphene can be maintained for both the transverse electric (TE) and transverse magnetic (TM) polarizations.


Author(s):  
Nicolas Payet ◽  
Muriel Darces ◽  
Marc Hélier ◽  
Jean-Louis Montmagnon ◽  
Florent Jangal

The direct measurement of the radiation pattern of an antenna is often unreachable. A near-field sampling followed by a near-field/far-field (NF/FF) transformation is therefore substituted. This process is, in most cases, applied to antennas placed in free-space or over a perfect electric conductor. On the contrary, few results concern real environment conditions. Nevertheless, it is well known that the nature of the soil can drastically change the radiating characteristic of an antenna. The lack of information about the behavior of the antenna in real conditions can give rise to substantial errors in the evaluation of the performances of electromagnetic devices. The aim of this paper is then to propose a new NF/FF transformation able to reliably supply the field radiated by an antenna placed over a plane, homogeneous, dielectric, and lossy interface. The method is based on the cylindrical-wave expansion of the electric field. The real soil is taken into account by means of its reflection coefficients. First results are given for simple antennas and for both transverse magnetic and transverse electric polarizations.


2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


2018 ◽  
Author(s):  
Adrian Cernescu ◽  
Michał Szuwarzyński ◽  
Urszula Kwolek ◽  
Karol Wolski ◽  
Paweł Wydro ◽  
...  

<div><div>Scattering-mode Scanning Near-Field Optical Microscopy (sSNOM) allows one to obtain absorption spectra in the mid-IR region for samples as small as 20 nm in size. This configuration has made it possible to measure FTIR spectra of the protein complement of membranes. (Amenabar 2013) We now show that mid-IR sSNOM has the sensitivity required to measure spectra of phospholipids in individual bilayers in the spectral range 800 cm<sup>-1</sup>–1400 cm<sup>-1</sup>. We have observed the main absorption bands of the dipalmitoylphosphatidylcholine headgroups in this spectral region above noise level. We have also mapped the phosphate absorption band at 1070 cm<sup>-1</sup> simultaneously with the AFM topography. We have shown that we could achieve sufficient contrast to discriminate between single and multiple phospholipid bilayers and other structures, such as liposomes. This work opens the way to further research that uses nano-IR spectroscopy to describe the biochemistry of cell membranes and model systems.</div></div><div></div>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13487-13493 ◽  
Author(s):  
Jianjun Chen ◽  
Chengwei Sun ◽  
Hongyun Li ◽  
Qihuang Gong

Based on the near-field interference of two slit apertures in a subwavelength plasmonic waveguide, an ultra-broadband unidirectional SPP launcher beyond the diffraction limit was experimentally realized. This ultra-small SPP launcher has important applications in high-integration plasmonic circuits.


Author(s):  
Jiaman Hong ◽  
Bo Wang ◽  
Xiaoqing Zhu ◽  
Zhichao Xiong ◽  
Yusen Huang ◽  
...  

In this paper, a novel embedded reflective grating (ERG) is presented to realize bi-function polarization operating at infrared band by finite element analysis (FEM). For transverse electric (TE) polarization, a two-port output (0th and −2nd orders) with an efficiency of more than 47% and excellent uniformity can be obtained. For transverse magnetic (TM) polarization, a high efficiency output of 94.72% can be achieved at the −2th order. The results of the analysis of the electric field intensity distribution, angular and wavelength bandwidths further demonstrate the advantages of the proposed grating. In addition, the tolerance analysis of period and duty cycle prove the feasibility of the grating in practical production.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document