scholarly journals Soil microbiomes mediate degradation of vinyl ester-based polymer composites

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Adam M. Breister ◽  
Muhammad A. Imam ◽  
Zhichao Zhou ◽  
Md Ariful Ahsan ◽  
Juan C. Noveron ◽  
...  

AbstractPolymer composites are attractive for structural applications in the built environment due to their lightweight and high strength properties but suffer from degradation due to environmental factors. While abiotic factors like temperature, moisture, and ultraviolet light are well studied, little is known about the impacts of naturally occurring microbial communities on their structural integrity. Here we apply complementary time-series multi-omics of biofilms growing on polymer composites and materials characterization to elucidate the processes driving their degradation. We measured a reduction in mechanical properties due to biologically driven molecular chain breakage of esters and reconstructed 121 microbial genomes to describe microbial diversity and pathways associated with polymer composite degradation. The polymer composite microbiome is dominated by four bacterial groups including the Candidate Phyla Radiation that possess pathways for breakdown of acrylate, esters, and bisphenol, abundant in composites. We provide a foundation for understanding interactions of next-generation structural materials with their natural environment that can predict their durability and drive future designs.

2020 ◽  
Author(s):  
Adam M. Breister ◽  
Muhammad A. Imam ◽  
Zhichao Zhou ◽  
Karthik Anantharaman ◽  
Pavana Prabhakar

AbstractPolymer composites have become attractive for structural applications in the built environment due to their lightweight and high strength properties but can suffer from degradation due to environmental factors. While impacts of abiotic factors like temperature and moisture are well studied, little is known about the influence of naturally occurring microbial communities on their structural integrity. Here we apply complementary time-series multi-omics of biofilms growing on polymer composites and materials characterization to elucidate, for the first time, the processes driving their degradation. We measured a reduction in mechanical properties due to molecular chain breakage and reconstructed 121 microbial genomes to describe microbial diversity and pathways associated with their degradation. The composite microbiome is dominated by four bacterial groups including the Candidate Phyla Radiation that possess pathways for breakdown of acrylate, esters, and bisphenol, abundant in composites. Overall, we provide a foundation for understanding interactions of next-generation structural materials with their natural environment that can predict their durability and drive future designs.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1013
Author(s):  
Sigitas Kilikevičius ◽  
Saulė Kvietkaitė ◽  
Leon Mishnaevsky ◽  
Mária Omastová ◽  
Andrey Aniskevich ◽  
...  

This paper presents a computational analysis on the mechanical and damage behavior of novel hybrid polymer composites with graphene and MXene nano-reinforcements targeted for flexible electronics and advanced high-strength structural applications with additional functions, such as real-time monitoring of structural integrity. Geometrical models of three-dimensional representative volume elements of various configurations were generated, and a computational model based on the micromechanical finite element method was developed and solved using an explicit dynamic solver. The influence of the geometrical orientation, aspect ratio, and volume fractions of the inclusions, as well as the interface properties between the nano-reinforcements and the matrix on the mechanical behavior, was determined. The results of the presented research give initial insights about the mechanical and damage behavior of the proposed composites and provide insight for future design iterations of similar multifunctional materials.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2135
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Kashif Anwar ◽  
Ali Raza ◽  
Muhammad Kaleem Ullah ◽  
...  

Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance. This paper provides a detailed review of the utilization of polymer composites in the construction industry based on the circular economy model. This paper provides an updated and detailed report on the effects of polymer composites in concrete as supplementary cementitious materials and a comprehensive analysis of the existing literature on their utilization and the production of polymer composites. A detailed review of a variety of polymers, their qualities, performance, and classification, and various polymer composite production methods is given to select the best polymer composite materials for specific applications. PCCs have become a promising alternative for the reuse of waste materials due to their exceptional performance. Based on the findings of the studies evaluated, it can be concluded that more research is needed to provide a foundation for a regulatory structure for the acceptance of polymer composites.


2020 ◽  
pp. 096739112091088 ◽  
Author(s):  
Christopher I Idumah

Polymer composites for structural applications are prone to damage emanating from cracks which are formed deep within the material where detection is not easy and repairing almost not feasible. Material cracking results in mechanical deterioration of pre-reinforced polymer composites utilized in microelectronic polymer-based components which can result in electrical failure. Micro-cracking occurring as a result of thermally and mechanically induced fatigue is additionally an established challenge in polymer performance. Self-healing composites are materials exhibiting capability of automatically recovering when damaged. They derive their inspiration through biological systems peculiar to the human skin which exhibit a natural tendency to undergo healing by themselves. Irrespective of their application, the instance cracks are formed within a polymeric composite and the structural integrity of the material is remarkably compromised. Therefore, this article elucidates very recently emerging advancements on self-healing composites. Challenges, prospects, future market disposition, and application of self-healing composites are also presented.


2016 ◽  
Vol 16 ◽  
pp. 1-6 ◽  
Author(s):  
S. Nallusamy

Over the past two decades it has been established that composite materials are the leading emerging materials. The natural fibres present a number of advantages over traditional synthetic fibres because of their better corrosion resistance, excellent thermo-mechanical properties and high strength to weight ratio. Also the composite materials play an important role in maintaining the eco-friendly design requirements. Among this, polymer matrix composite is one of the recent developing sectors on the composite field, because it has high strength with less density as compared to the metal matrix composite. Depending on the applications, the properties of the polymer reinforced composite are improved by modifying compositions, process of fabrication and direction of fibre etc. In this analysis the Roselle Fibre (Hibiscus Sabdariffa) is reinforced with polymer composite by wt % in the mode of compression molding. The mechanical properties of the above fabricated material were analyzed by ASTM Standards and also the characterization of polymer composites were analysed using SEM. The compressive strength and the hardness value were high as compared to other strength properties; hence it is more suitable for compressive and structural applications. The results concluded that the treated fibre with chemical reveals better compatibility with polymer matrix than that of untreated fibre.


Alloy Digest ◽  
1968 ◽  
Vol 17 (11) ◽  

Abstract Lukens LT-75HS is a quenched and tempered, fine grain, notch-tough, carbon steel having good impact and notch-toughness properties. It is engineered specifically for use in pressure vessel and structural applications requiring high strength properties and guaranteed notch toughness. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance as well as forming, heat treating, and joining. Filing Code: CS-28. Producer or source: Lukens Steel Company.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 653-664
Author(s):  
IGNACIO DE SAN PIO ◽  
KLAS G. JOHANSSON ◽  
PAUL KROCHAK

Different strategies aimed at reducing the negative impact of fillers on paper strength have been the objective of many studies during the past few decades. Some new strategies have even been patented or commercialized, yet a complete study on the behavior of the filler flocs and their effect on retention, drainage, and formation has not been found in literature. This type of research on fillers is often limited by difficulties in simulating high levels of shear at laboratory scale similar to those at mill scale. To address this challenge, a combination of techniques was used to compare preflocculation (i.e., filler is flocculated before addition to the pulp) with coflocculation strategies (i.e., filler is mixed with a binder and flocculated before addition to the pulp). The effect on filler and fiber flocs size was studied in a pilot flow loop using focal beam reflectance measurement (FBRM) and image analysis. Flocs obtained with cationic polyacrylamide (CPAM) and bentonite were shown to have similar shear resistance with both strategies, whereas cationic starch (CS) was clearly more advantageous when coflocculation strategy was used. The effect of flocculation strategy on drainage rate, STFI formation, ash retention, and standard strength properties was measured. Coflocculation of filler with CPAM plus bentonite or CS showed promising results and produced sheets with high strength but had a negative impact on wire dewatering, opening a door for further optimization.


Alloy Digest ◽  
1998 ◽  
Vol 47 (3) ◽  

Abstract Alcoa 2024 alloy has good machinability and machined surface finish capability, and is a high-strength material of adequate workability. It has largely superseded alloy 2017 (see Alloy Digest Al-58, August 1974) for structural applications. The alloy has comparable strength to some mild steels. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as machining and surface treatment. Filing Code: AL-346. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document