scholarly journals Phenotypic plasticity of fungal traits in response to moisture and temperature

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Charlotte J. Alster ◽  
Steven D. Allison ◽  
Nels G. Johnson ◽  
Sydney I. Glassman ◽  
Kathleen K. Treseder

AbstractPhenotypic plasticity of traits is commonly measured in plants to improve understanding of organismal and ecosystem responses to climate change but is far less studied for microbes. Specifically, decomposer fungi are thought to display high levels of phenotypic plasticity and their functions have important implications for ecosystem dynamics. Assessing the phenotypic plasticity of fungal traits may therefore be important for predicting fungal community response to climate change. Here, we assess the phenotypic plasticity of 15 fungal isolates (12 species) from a Southern California grassland. Fungi were incubated on litter at five moisture levels (ranging from 4–50% water holding capacity) and at five temperatures (ranging from 4–36 °C). After incubation, fungal biomass and activities of four extracellular enzymes (cellobiohydrolase (CBH), β-glucosidase (BG), β-xylosidase (BX), and N-acetyl-β-D-glucosaminidase (NAG)) were measured. We used response surface methodology to determine how fungal phenotypic plasticity differs across the moisture-temperature gradient. We hypothesized that fungal biomass and extracellular enzyme activities would vary with moisture and temperature and that the shape of the response surface would vary between fungal isolates. We further hypothesized that more closely related fungi would show more similar response surfaces across the moisture-temperature gradient. In support of our hypotheses, we found that plasticity differed between fungi along the temperature gradient for fungal biomass and for all the extracellular enzyme activities. Plasticity also differed between fungi along the moisture gradient for BG activity. These differences appear to be caused by variation mainly at the moisture and temperature extremes. We also found that more closely related fungi had more similar extracellular enzymes activities at the highest temperature. Altogether, this evidence suggests that with global warming, fungal biodiversity may become increasingly important as functional traits tend to diverge along phylogenetic lines at higher temperatures.

2013 ◽  
Vol 10 (1) ◽  
pp. 567-582 ◽  
Author(s):  
S. Endres ◽  
J. Unger ◽  
N. Wannicke ◽  
M. Nausch ◽  
M. Voss ◽  
...  

Abstract. The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena have a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, they are able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters, including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days under aeration with low (180 μatm), medium (380 μatm), and high (780 μatm) CO2 concentrations. Obtained pCO2 levels in the treatments were on median 315, 353, and 548 μatm CO2, respectively. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment–related effects were identified for cyanobacterial growth, which in turn influenced the concentration of mucinous substances and the recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment. In total, significantly more mucinous substances accumulated in the high pCO2 treatment, reaching 363 μg Xeq L−1 compared to 269 μg Xeq L−1 in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. We hypothesise from our results that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.


2020 ◽  
Vol 8 (6) ◽  
pp. 811 ◽  
Author(s):  
Jie Xu ◽  
Bing Liu ◽  
Zhao-lei Qu ◽  
Yang Ma ◽  
Hui Sun

Soil microorganisms and extracellular enzymes play important roles in soil nutrient cycling. Currently, China has the second-largest area of eucalyptus plantations in the world. Information on the effects of eucalyptus age and species of trees on soil microbial biomass and enzyme activities, however, is limited. In this paper, the soil microbial biomass and enzyme activities were studied in eucalyptus plantations with different ages (1 and 5+ years) and species of trees (E. urophylla×E. grandis, E. camaldulens and E. pellita) in South China. The results showed that both plantation age and eucalyptus species could affect the total microbial biomass and fungal biomass, whereas the bacterial biomass was affected only by plantation age. The fungal biomass and the fungi-to-bacteria ratio significantly increased along with increasing plantation age. Similarly, the plantation age and eucalyptus species significantly affected the enzyme activities associated with carbon cycling (β-xylosidase, β-d-glucuronidase, β-cellobiosidase and β-glucosidase). The activities of β-d-glucuronidase and β-glucosidase were significantly higher in the E. camaldulens plantation. The enzymes involved in nitrogen (N-acetyl-glucosamidase) and sulfur (sulfatase) cycling were only affected by the eucalyptus plantation age and species, respectively. The results highlight the importance of the age and species of eucalyptus plantations on soil microbial activities.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tyler J. Kohler ◽  
Hannes Peter ◽  
Stilianos Fodelianakis ◽  
Paraskevi Pramateftaki ◽  
Michail Styllas ◽  
...  

Glacier-fed streams (GFSs) exhibit near-freezing temperatures, variable flows, and often high turbidities. Currently, the rapid shrinkage of mountain glaciers is altering the delivery of meltwater, solutes, and particulate matter to GFSs, with unknown consequences for their ecology. Benthic biofilms dominate microbial life in GFSs, and play a major role in their biogeochemical cycling. Mineralization is likely an important process for microbes to meet elemental budgets in these systems due to commonly oligotrophic conditions, and extracellular enzymes retained within the biofilm enable the degradation of organic matter and acquisition of carbon (C), nitrogen (N), and phosphorus (P). The measurement and comparison of these extracellular enzyme activities (EEA) can in turn provide insight into microbial elemental acquisition effort relative to environmental availability. To better understand how benthic biofilm communities meet resource demands, and how this might shift as glaciers vanish under climate change, we investigated biofilm EEA in 20 GFSs varying in glacier influence from New Zealand’s Southern Alps. Using turbidity and distance to the glacier snout normalized for glacier size as proxies for glacier influence, we found that bacterial abundance (BA), chlorophyll a (Chl a), extracellular polymeric substances (EPS), and total EEA per gram of sediment increased with decreasing glacier influence. Yet, when normalized by BA, EPS decreased with decreasing glacier influence, Chl a still increased, and there was no relationship with total EEA. Based on EEA ratios, we found that the majority of GFS microbial communities were N-limited, with a few streams of different underlying bedrock geology exhibiting P-limitation. Cell-specific C-acquiring EEA was positively related to the ratio of Chl a to BA, presumably reflecting the utilization of algal exudates. Meanwhile, cell-specific N-acquiring EEA were positively correlated with the concentration of dissolved inorganic nitrogen (DIN), and both N- and P-acquiring EEA increased with greater cell-specific EPS. Overall, our results reveal greater glacier influence to be negatively related to GFS biofilm biomass parameters, and generally associated with greater microbial N demand. These results help to illuminate the ecology of GFS biofilms, along with their biogeochemical response to a shifting habitat template with ongoing climate change.


Ecosystems ◽  
2019 ◽  
Vol 23 (4) ◽  
pp. 768-782 ◽  
Author(s):  
Caitlin I. Looby ◽  
Emily C. Hollenbeck ◽  
Kathleen K. Treseder

Abstract Tropical montane cloud forests contain a large abundance and diversity of canopy epiphytes, which depend on canopy soil to retain water and nutrients. We lack an in depth understanding of how these soils contribute to ecosystem processes and soil diversity and how sensitive they may be to projected climate change. We compared canopy and ground soils in Monteverde, Costa Rica, to determine how these two soil types differ in their extracellular enzyme activity (EEA) and fungal communities. Samples were also collected along two elevation gradients to reveal if canopy soils differed in how EEA and fungal communities responded to elevation compared to ground soils. We found that canopy soils had higher EEA than ground soils. Fungal communities were less diverse and differed significantly between the two soil types. These differences were associated with higher relative abundances of yeasts and endophytes in canopy soils. The relative abundances of free-living filamentous fungi and yeasts shifted more dramatically with elevation in canopy soils compared to ground soils. Our study suggests that canopy soils may be a reservoir for endophytes. Epiphytes may invest in symbionts that promote stress tolerance over mycorrhizal fungi whose high resource demands are costly and less beneficial. Overall, soils harbor distinct fungal communities that may be altered under projected climate change.


2012 ◽  
Vol 9 (4) ◽  
pp. 5109-5151 ◽  
Author(s):  
S. Endres ◽  
J. Unger ◽  
N. Wannicke ◽  
M. Nausch ◽  
M. Voss ◽  
...  

Abstract. The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP) by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment–related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 μg Gum Xanthan eq l−1 compared to 269 μg Gum Xanthan eq l−1 in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities were increased by factor 1.64 and 2.25, respectively, in the medium and high compared to the low pCO2 treatment. In conclusion, our results suggest that Nodularia spumigena can grow faster under elevated pCO2 by enhancing the recycling of organic matter to acquire nutrients.


2021 ◽  
Vol 9 (5) ◽  
pp. 702-708
Author(s):  
Nguyen Chi Mai ◽  
◽  
Pham Thi Hoe ◽  
Vu Huong Giang ◽  
Le Quynh Lien ◽  
...  

Endophytic microbia are known as natural sources for producing valuable enzymes. In this study, four endophytic fungi were isolated from roots of local Catharanthus roseus (L.) G. Don var. roseus (purple flower) and C. roseus var. ocellatus (red stamens white flower) widely grown in Nha Trang. They were identified as Fusarium solani RN1, Chaetomium funicola RN3, Penicillium rugulosum RN4 and Chaetomium homopilatum WN1 based on morphologies colonies and spores. The activity analysis of their extracellular enzymes indicted all isolated endophytic fungi are able to produce protease, cellulose, xylanase as well as amylase. This is the first report on the endophytic fungi inhabited in C. roseus plant growing in the coastal regions of Vietnam, which could provide an attractive source for bioactive enzyme exploitation.


2021 ◽  
Vol 13 (7) ◽  
pp. 3768
Author(s):  
Zhiyuan Hu ◽  
Jiating Li ◽  
Kangwei Shi ◽  
Guangqian Ren ◽  
Zhicong Dai ◽  
...  

The rapid expansion of Canada goldenrod (Solidago canadensis L.) in China has drawn considerable attention as it may not only decrease vegetation diversity but also alter soil nutrient cycling in the affected ecosystems. Soil extracellular enzymes mediate nutrient cycling by catalyzing the organic matter decomposition; however, the mechanisms by which alien plant invasion may affect soil extracellular enzymes remain unclear. The objective of this study was to investigate the responses of soil extracellular enzyme activities and ecoenzymatic stoichiometry to S. canadensis invasion. Several extracellular enzymatic activities related to carbon, nitrogen, and phosphorus cycling were measured using a fluorometric method. Ecoenzymatic stoichiometry was used as a proxy of soil microbial metabolic limitations. S. canadensis invasion appeared to be associated with decreased activities of enzymes and with substantial conversions of microbial metabolic carbon and nitrogen limitations. The changes in the activities of extracellular enzymes and the limitations of microbial metabolism were correlated with the alterations in the nutrient availability and resource stoichiometry in the soil. These findings reveal that the alterations in soil available nutrients associated with S. canadensis invasion may regulate extracellular enzymatic activities and cause microbial metabolic limitations, suggesting that S. canadensis invasion considerably affects biogeochemical cycling processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zeyu Zhao ◽  
Shicheng Shao ◽  
Na Liu ◽  
Qiang Liu ◽  
Hans Jacquemyn ◽  
...  

Fungi employ extracellular enzymes to initiate the degradation of organic macromolecules into smaller units and to acquire the nutrients for their growth. As such, these enzymes represent important functional components in terrestrial ecosystems. While it is well-known that the regulation and efficiency of extracellular enzymes to degrade organic macromolecules and nutrient-acquisition patterns strongly differ between major fungal groups, less is known about variation in enzymatic activity and carbon/nitrogen preference in mycorrhizal fungi. In this research, we investigated variation in extracellular enzyme activities and carbon/nitrogen preferences in orchid mycorrhizal fungi (OMF). Previous research has shown that the mycorrhizal fungi associating with terrestrial orchids often differ from those associating with epiphytic orchids, but whether extracellular enzyme activities and carbon/nitrogen preference differ between growth forms remains largely unknown. To fill this gap, we compared the activities of five extracellular enzymes [cellulase, xylanase, lignin peroxidase, laccase, and superoxide dismutase (SOD)] between fungi isolated from epiphytic and terrestrial orchids. In total, 24 fungal strains belonging to Tulasnellaceae were investigated. Cellulase and xylanase activities were significantly higher in fungi isolated from terrestrial orchids (0.050 ± 0.006 U/ml and 0.531 ± 0.071 U/ml, respectively) than those from epiphytic orchids (0.043 ± 0.003 U/ml and 0.295 ± 0.067 U/ml, respectively), while SOD activity was significantly higher in OMF from epiphytic orchids (5.663 ± 0.164 U/ml) than those from terrestrial orchids (3.780 ± 0.180 U/ml). Carboxymethyl cellulose was more efficiently used by fungi from terrestrial orchids, while starch and arginine were more suitable for fungi from epiphytic orchids. Overall, the results of this study show that extracellular enzyme activities and to a lesser extent carbon/nitrogen preferences differ between fungi isolated from terrestrial and epiphytic orchids and may indicate functional differentiation and ecological adaptation of OMF to local growth conditions.


2020 ◽  
Author(s):  
Marta Misiak ◽  
William P. Goodall‐Copestake ◽  
Tim H. Sparks ◽  
M. Roger Worland ◽  
Lynne Boddy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document