A Rail Wear Testing Machine

1909 ◽  
Vol 68 (1749supp) ◽  
pp. 17-17
2017 ◽  
Vol 898 ◽  
pp. 1406-1413
Author(s):  
Yu Long Qi ◽  
Hai Yan Chen ◽  
Chen Yang Shu ◽  
Xuan Zhao ◽  
Li Hua Dong ◽  
...  

Soft and hard FeCrNiSi alloy coatings were obtained on 30CrMo alloy steel surface by laser cladding. The phase constitution, microstructure, frictional wear behavior and corrosion resistance of the composite coating were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), three-dimensional non-contact surface mapping, friction and wear testing machine and electrochemical workstation, separately. XRD analysis showed that the cladding layer was mainly composed of Fe-based alloy composition, accompanied by a small amount of cobalt nickel alloy. There were massive protrusions in the interface of the soft sample, and the coating was regularly dendritic. Hard sample coating lines were cluttered, and there was no bulk deposition. Under the same wear condition, the soft coating exhibited serious abrasive wear, while the hard coating had slight abrasive wear behavior. The polarization curves in 3%NaCl solution revealed that the self-corrosion potential of the soft coating was positive shifted more than that the hard coating. The soft coating has better corrosion resistance than the hard coating.


2021 ◽  
Vol 67 (1-2) ◽  
pp. 27-35
Author(s):  
Idawu Yakubu Suleiman ◽  
Auwal Kasim ◽  
Abdullahi Tanko Mohammed ◽  
Munir Zubairu Sirajo

This paper aims to investigate the mechanical (tensile, hardness, impact, elongation), microstructure and wear behaviours of aluminium alloy reinforced with mussel shell powder (MSP) at different weight percentages (0 wt. % to 15 wt. %) at 3 wt. % interval. The mussel shell powder was characterized by X-ray fluorescence (XRF). The matrix and the composites’ morphology were studied using a scanning electron microscope attached with energy dispersive spectroscopy for the distribution of mussel shell powder particles within the matrix. The wear behaviour of the alloy and composites produced at various reinforcements were carried out using a Taber abrasion wear-testing machine. The XRF showed the compositions of MSP to contain calcium oxide (95.70 %), silica (0.83 %) and others. Mechanical properties showed that tensile values increase with increases in MSP, hardness value increases from 6 wt. % to 15 wt. % of MSP. The impact energy decreased from 42.6 J at 3 wt. % to 22.6 J at 15 wt. %; the percentage elongation also decreased from 37.4 % at 3 wt. % to 20.5 % at 15 wt. % MSP, respectively. The bending stress results increase with increases in the percentage of reinforcement. The morphologies revealed that uniform distribution of MSP within the matrix resulted to improvement in mechanical properties. The wear resistance of the composites increases with increase in the applied load and decreases with increases in the weight percentage of MSP and can be used in the production of brake pads and insulators in the automobile industry.


2013 ◽  
Vol 300-301 ◽  
pp. 833-836
Author(s):  
Shi Jie Wang ◽  
Hao Lin ◽  
Xiao Ren Lv

The progressing cavity pump (PCP) always works in the waxy oil well. Therefore the research on the influence of various liquid paraffin contents in crude oil on the friction and wear behaviors of the progressing cavity pump`s stator is very important for choosing the best stator rubber and developing the service life of PCP. Wear behavior of nitrile butadiene rubber (NBR) and fluororubber (FKM) was investigated at room temperature using a reciprocating friction and wear testing machine under the various paraffin contents in crude oil (0%、10%、30%、50%、100%). The wear morphology of blend was analyzed through the stereomicroscope and the wear behavior of two blends was also discussed and compared. The results show that the wear resistance of FKM is better than that of NBR under the same paraffin content in crude oil; With the increase of the paraffin content, the wear and coefficient of friction also increase. When the paraffin content in crude oil is less than 30%, the wear loss of NBR and FKM are basically the same; When the paraffin content in crude oil is more than 30%, the wear loss of NBR is far more than that of FKM.


1955 ◽  
Vol 21 (107) ◽  
pp. 555-561 ◽  
Author(s):  
Makoto OKOSHI ◽  
Toshio SATA ◽  
Makio MIZUNO
Keyword(s):  

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2019 ◽  
Vol 26 (04) ◽  
pp. 1850173 ◽  
Author(s):  
S. JEYAPRAKASAM ◽  
R. VENKATACHALAM ◽  
C. VELMURUGAN

This research work focuses about fabrication and investigation on the influence of Titanium Carbide (TiC)-graphite particles reinforcement in wear behavior of Aluminium Matrix Composites (AMC). The stir casting technique was used to fabricate AMC reinforced with various weight percentage of TiC and graphite particles. Wear tests were conducted by using pin-on-disc wear testing machine. The hardness of the hybrid composites were recorded on the test specimen. The worn out surfaces of composites were analyzed using Scanning Electron Microscope (SEM). Results reveal that the presence of TiC and graphite particles improved the wear resistance. The wear of composite is primarily due to delamination and abrasion. The graphite particles serve as the solid lubricant on the wear of composite. The hardness of composite is improved with the decrease in weight percentage of graphite. SEM images reveal that the reinforcement particles in the matrix are homogeneously distributed. Also, worn-out surfaces of the composite were studied to observe wear track and wear mechanisms like plowing grooves, crack or cutting, and fragmentation.


2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2017 ◽  
Vol 69 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Wengang Chen ◽  
Xueyuan Liu ◽  
Lili Zheng

Purpose This paper aims to clarify the friction properties of 304 steel surface modification. The surface modification includes laser texturing processing and nitriding treatment on 304 steel surface, and then the friction properties’ test was conducted on different friction directions and different upper test samples by using microfriction and wear testing machine. Design/methodology/approach The diameter and spacing of 100-, 150-, 200-, 300-μm pit array on the surface of 304 steel were calculated using a M-DPSS-50 semiconductor laser device. Then, the textured surface was nitriding-treated using a nitriding salt bath device. The chemical composition, surface morphology and surface microhardness of the composite-modified surface were measured by X-ray diffraction and by using an optical microscope and a microhardness tester. The tribological characteristics of the composite-modified surface were tested by MRTR microcomputer-controlled multifunctional friction and wear testing machine. Findings The result showed that a rule pit texture surface was obtained by the texture processing. The microhardness of nitriding treatment surface reached 574.27HV0.1, which significantly higher than 222.58HV0.1 of 304 steel. The composite-modified surface has excellent anti-friction and wear resistance properties when the upper specimen was GCr15 steel and ZrO2, respectively. The composite-modified surface has excellent anti-friction and anti-wear properties after long time friction under different angles. However, the friction coefficient and wear morphology of the friction pairs are not affected by the friction angle. Research limitations/implications Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further. Practical implications The paper conducted a systematic study of the tribological characteristics of 304 steel composite modification surface and provided a good basis for the extensive application of 304 steel. Social implications The study provides a good basis for the extensive application of 304 steel. Originality/value This paper fulfils an identified need to study the extensive application of 304 steel.


2018 ◽  
Vol 207 ◽  
pp. 03011
Author(s):  
B Qiu ◽  
S M Xing ◽  
Q Dong ◽  
H Liu

Impact abrasive wear behavior of high chromium white iron (HCWI) produced by liquid die forging process were investigated. the wear tests were performed with the MLD-10 abrasive wear testing machine, using SiO2 abrasive and with four impact energies of 1.5 J, 2.5 J, 3.5 J and 4.5 J for 120 min. The results indicated that the cumulative volume loss of HCWI sample increases with the growth of impact energy, and exhibits best wear resistance under low impact condition. For given impact energy, the volume loss increases with the increasing of wear time, which shown an approximately liner tendency. The macro-morphologies, SEM images of worn surface and cross-sectional images of wear samples were observed by optical microscope and SEM, and the wear mechanism and characteristics were analyzed. Results shown that the wear characteristics is mainly based on the shallow ploughing and accompanied by plastic deformation under lower impact energy, while the fatigue peeling and embedded abrasive become the most significant characteristics when the impact energy is higher.


2011 ◽  
Vol 291-294 ◽  
pp. 129-132
Author(s):  
Xiao Juan Wu ◽  
Zheng Jun Liu ◽  
Guo De Li

The high-phosphorus electroless Ni–P plating was coated on the surface of stainless steel. Five parameters, which have much effect on coating quality, were chosen to optimize the high-phosphorus electroless Ni–P plating technology in L16(45) orthogonal test. By means of x-ray diffraction and scanning electron microscopy, the morphologies and phase structures of coating were analyzed. Furthermore, the mechanical properties of coating were studied by micro-hardness tester and universal friction-wear testing machine. The results reveal that the optimal technical parameters are as follows: 20 g•L-1 for NiSO4, 23 g•L-1 for NaH2PO2, 15 g•L-1 for C6H5O7Na3•2H2O, 8 g•L-1 for H2N-CH2-COOH, 10g•L-1 for CH3COONa, 7 g•L-1 for C4H6O4, with PH value of 4.6, which leads to perfect coating quality. Besides, the P content is 11.64 wt.%, i.e. a high-P coating. The micro-hardness of the coating is 550.67 HV and the wear loss, 4.7×10-3 g. The thermal shock test suggests that between coating and matrix exist a perfect cohesion, which is due to the homogenous and compact coating, with an amorphous structure, under the condition of the optimal technical parameters.


Sign in / Sign up

Export Citation Format

Share Document