Uric acid improves the beneficial effects of rt-PA in a rat model of thromboembolic ischemia

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S129-S129
Author(s):  
Eduardo Romanos ◽  
Anna M Planas ◽  
Angel Chamorro
2020 ◽  
Vol 133 ◽  
pp. 104399 ◽  
Author(s):  
Asheebo Rojas ◽  
Thota Ganesh ◽  
Wenyi Wang ◽  
Jennifer Wang ◽  
Raymond Dingledine

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


Shock ◽  
2001 ◽  
Vol 15 (Supplement) ◽  
pp. 58-59
Author(s):  
E. Mazzon ◽  
L. Dugo ◽  
A. De Sarro ◽  
J. Li ◽  
A. P. Caputi ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 536-541
Author(s):  
Xiangpei Zhao ◽  
Li Li ◽  
Chuanmei Zhong ◽  
Hongli Teng ◽  
Guodong Huang

Hyperuricemia (HUA) is a metabolic disorder of purine metabolism which leads to the increase of serum uric acid. Tongfeng Lian granule (TFLA) is a clinical empirical traditional herb prescription in China, is biobased natural product material. To study its regulatory mechanism on uric acid transporter in rats with HUA, the rat model of hyperuricemic was established by oral administration of potassium oxazinate (1.5 g/kg) and adenine (0.05 g/kg). The related indexes were detected to evaluate the uric Acid Transporter after treat with TFLA. In the results, compared with model group, the high dose TFLA can reduce the levels of Related serum biochemical indexes (*P < 0.05, **P < 0.01). TFLA could reduce the levels of URAT1, GLUT9 and increase the expression of OAT3 in kidney. In conclusion, TFLA can effectively inhibit the level of serum uric acid with hyperuricemia rats, and the possible mechanism related to TFLA inhibiting the reabsorption of uric acid by URAT1 and GLUT9, promoting the secretion of OAT3 and uric acid into urine.


2016 ◽  
Vol 34 (3) ◽  
pp. 184-193 ◽  
Author(s):  
Xiao Xu ◽  
Miao-Miao Wang ◽  
Zhi-ling Sun ◽  
Dan-ping Zhou ◽  
Ling Wang ◽  
...  

Objective To examine the possible impact of moxibustion on the serum proteome of the collagen-induced arthritis (CIA) rat model. Materials and Methods Thirty-six male Sprague-Dawley rats were included in this experiment. The CIA animal model was prepared by injection of type II bovine collagen in Freund's adjuvant on the first and seventh day. The 36 rats were randomly divided into two groups: the untreated CIA group (control), and the CIA plus treatment with moxibustion (CIA+moxi) group. Moxibustion was administered daily at ST36 and BL23 for 7, 14 or 21 days (n=12 rats each). Arthritis score was used to assess the severity of arthritis. At the end of each 7 day treatment, blood samples from the control group and the CIA+moxi group were collected. After removal of high abundance proteins from serum samples, two-dimensional gel combined with matrix-assisted laser desorption ionisation time-of-flight MS/MS (MALDI-TOF-MS/MS) techniques were performed to examine serum protein expression patterns of the CIA rat model with and without moxibustion treatment. In addition, the relevant proteins were further analysed with the use of bioinformatics analysis. Results Moxibustion significantly decreased arthritis severity in the rats in the CIA+moxi group, when compared with the rats in the CIA group 35 days after the first immunisation (p=0.001). Seventeen protein spots which changed >1.33 or <0.77 at p<0.05 using Bonferonni correction for multiple testing were found to be common to all three comparisons, and these proteins were used for classification of functions using the Gene Ontology method. Consequently, with the use of the Ingenuity Pathway Analysis, the top canonical pathways and a predicted proteomic network related to the moxibustion effect of CIA were established. Conclusions Using the proteomics technique, we have identified novel candidate proteins that may be involved in the mechanisms of action underlying the beneficial effects of moxibustion in rats with CIA. Our findings suggest that immune responses and metabolic processes may be involved in mediating the effects of moxibustion. Moreover, periodxiredoxin I (PRDX1) and inositol 1,4,5-triphosphate receptor (IP3R) may be potential targets.


2016 ◽  
Vol 34 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Yingxue Cui ◽  
Linpeng Wang ◽  
Guangxia Shi ◽  
Lu Liu ◽  
Pei Pei ◽  
...  

Objective Acupuncture has been shown to be effective for the treatment of chemotherapy-related nausea and vomiting. The aim of this study was to explore the mechanisms of action underlying the anti-emetic effect of electroacupuncture (EA). Design Forty-eight rats received saline (n=12) or 6 mg/kg cisplatin (n=36) to establish a chemotherapy-induced nausea and vomiting model. EA was performed at CV12 (n=12), bilateral PC6 (n=12), or sham points (n=12) 3 days before and 1–2 days after cisplatin administration (4–5 times in total), at 0.5–1 mA intensity and 2/15 Hz frequency for 10 min. Kaolin intake, food intake and bodyweight change were evaluated as markers of nausea and vomiting severity. Concentrations of serotonin (5-hydroxytryptamine, 5-HT) in the duodenum and c-Fos expression in the nucleus of the solitary tract (NTS) were measured using high performance liquid chromatography and immunohistochemistry, respectively. Results Cisplatin administration led to increased kaolin intake and reduced food intake and bodyweight over the following 2 days. EA at CV12 significantly reversed the cisplatin-induced change in kaolin intake (on days 1 and 2) and food intake and bodyweight (on day 1). EA at CV12 also attenuated the cisplatin-induced increase in 5-HT in the duodenum and suppressed c-Fos expression in the NTS. EA at PC6 influenced kaolin intake (on day 1 only) and c-Fos expression, but had no statistically significant effect on food intake, bodyweight or 5-HT expression. Conclusions This study demonstrated beneficial effects of EA on chemotherapy-induced nausea and vomiting in a rat model. The anti-emetic effect of EA may be mediated through inhibition of 5-HT secretion in the duodenum and activity of the NTS.


Sign in / Sign up

Export Citation Format

Share Document