scholarly journals Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Sachiko Sato ◽  
Ann Rancourt ◽  
Yukiko Sato ◽  
Masahiko S. Satoh

2018 ◽  
Author(s):  
Sachiko Sato ◽  
Ann Rancourt ◽  
Masahiko S. Satoh

AbstractSingle-cell tracking analysis is a potential research technique for the accurate investigation of cellular behaviors and events occurring within a cell population. However, this analysis is challenging because of a lack of microscope hardware and software suitable for single-cell tracking analysis of a wide range of cell types and densities. We therefore developed a computerized single-cell lineage tracking analysis system based on a microscope optimized for differential interference contrast-based long-term live cell imaging, with software designed to automatically generate live cell videos, perform image segmentation, carry out single-cell tracking, and create and analyze a cell lineage database. We previously reported that minor cell sub-populations (3%–7%) within a cultured cancer cell line could play a critical role in maintaining the cell population. Given that sub-population characterization requires large-scale single-cell tracking analysis, we tracked single cells using the above computerized system and identified a minor cell population (1.5%) composed ofSambucus nigraagglutinin-I-positive cells, which acted as stem-like cells for the established culture. These results demonstrate the potential value of this computerized single-cell lineage tracking analysis system as a routine tool in cell biology, opening new avenues for research aimed at identifying previously unknown characteristics of individual cultured cells with high accuracy.



2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.





1997 ◽  
Vol 69 (1) ◽  
pp. 7-13 ◽  
Author(s):  
X. Lery ◽  
G. Fediere ◽  
A. Taha ◽  
M. Salah ◽  
J. Giannotti


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lars Velten ◽  
Benjamin A. Story ◽  
Pablo Hernández-Malmierca ◽  
Simon Raffel ◽  
Daniel R. Leonce ◽  
...  

AbstractCancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.





1989 ◽  
Vol 65 (8) ◽  
pp. 187-190
Author(s):  
Yasuji RIKITAKE ◽  
Atsushige SATO




Sign in / Sign up

Export Citation Format

Share Document