scholarly journals Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ji-Young Lee ◽  
Young Kyoung Park ◽  
Eun Seon Chung ◽  
In Young Na ◽  
Kwan Soo Ko

Abstract The increased reliance on colistin for treating multidrug-resistant Gram-negative bacterial infections has resulted in the emergence of colistin-resistant Pseudomonas aeruginosa. We attempted to identify genetic contributors to colistin resistance in vitro evolved isogenic colistin-resistant and -susceptible strains of two P. aeruginosa lineages (P5 and P155). Their evolutionary paths to acquisition and loss of colistin resistance were also tracked. Comparative genomic analysis revealed 13 and five colistin resistance determinants in the P5 and P155 lineages, respectively. Lipid A in colistin-resistant mutants was modified through the addition of 4-amino-L-arabinose; this modification was absent in colistin-susceptible revertant strains. Many amino acid substitutions that emerged during the acquisition of colistin resistance were reversed in colistin-susceptible revertants. We demonstrated that evolved colistin resistance in P. aeruginosa was mediated by a complicated regulatory network that likely emerges through diverse genetic alterations. Colistin-resistant P. aeruginosa became susceptible to the colistin upon its withdrawal because of genetic reversion. The mechanisms through which P. aeruginosa acquires and loses colistin resistance have implications on the treatment options that can be applied against P. aeruginosa infections, with respect to improving bactericidal efficacy and preventing further resistance to antibiotics.

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Nadine Lemaître ◽  
Xiaofei Liang ◽  
Javaria Najeeb ◽  
Chul-Jin Lee ◽  
Marie Titecat ◽  
...  

ABSTRACT The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Cervoni ◽  
Alessandra Lo Sciuto ◽  
Chiara Bianchini ◽  
Carmine Mancone ◽  
Francesco Imperi

Colistin represents a last-line treatment option for infections caused by multidrug resistant Gram-negative pathogens, including Pseudomonas aeruginosa. Colistin resistance generally involves the modification of the lipid A moiety of lipopolysaccharide (LPS) with positively charged molecules, namely phosphoethanolamine (PEtN) or 4-amino-4-deoxy-L-arabinose (Ara4N), that reduce colistin affinity for its target. Several lines of evidence highlighted lipid A aminoarabinosylation as the primary colistin resistance mechanism in P. aeruginosa, while the contribution of phosphoethanolamination remains elusive. PEtN modification can be due to either endogenous (chromosomally encoded) PEtN transferase(s) (e.g., EptA in P. aeruginosa) or plasmid borne MCR enzymes, commonly found in enterobacteria. By individually cloning eptA and mcr-1 into a plasmid for inducible gene expression, we demonstrated that MCR-1 and EptA have comparable PEtN transferase activity in P. aeruginosa and confer colistin resistance levels similar to those provided by lipid A aminoarabinosylation. Notably, EptA, but not MCR-1, negatively affects P. aeruginosa growth and, to a lesser extent, cell envelope integrity when expressed at high levels. Mutagenesis experiments revealed that PEtN transferase activity does not account for the noxious effects of EptA overexpression, that instead requires a C-terminal tail unique to P. aeruginosa EptA, whose function remains unknown. Overall, this study shows that both endogenous and exogenous PEtN transferases can promote colistin resistance in P. aeruginosa, and that PEtN and MCR-1 mediated resistance has no impact on growth and cell envelope homeostasis, suggesting that there may be no fitness barriers to the spread of mcr-1 in P. aeruginosa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katy Jeannot ◽  
Katheryn Hagart ◽  
Laurent Dortet ◽  
Markus Kostrzewa ◽  
Alain Filloux ◽  
...  

Colistin is frequently a last resort treatment for Pseudomonas aeruginosa infections caused by multidrug-resistant (MDR) and extensively drug resistant (XDR) strains, and detection of colistin resistance is essential for the management of infected patients. Therefore, we evaluated the recently developed MALDIxin test for the detection of colistin resistance in P. aeruginosa clinical strains using the routine matrix-assisted laser desorption ionization (MALDI) Biotyper Sirius system. The test is based on the detection by mass spectrometry of modified lipid A by the addition of 4-amino-l-arabinose (l-ara4N) molecules on one or two phosphate groups, in strains resistant to colistin. Overproduction of l-Ara4N molecules is mainly due to the constitutive activation of the histidine kinase (PmrB) or the response regulator (PmrA) following an amino-acid substitution in clinical strains. The performance of the test was determined on a panel of 14 colistin-susceptible and 14 colistin-resistant P. aeruginosa clinical strains, the reference strain PAO1 and positive control mutants PmrB (V28G), PmrB (D172), PhoQ (D240–247), and ParR (M59I). In comparison with the broth microdilution (BMD) method, all the susceptible strains (n=14) and 8/14 colistin-resistant strains were detected in less than 1h, directly on whole bacteria. The remaining resistant strains (n=6) were all detected after a short pre-exposure (4h) to colistin before sample preparation. Validation of the method on a larger panel of strains will be the next step before its use in diagnostics laboratories. Our data showed that the MALDIxin test offers rapid and efficient detection of colistin resistant P. aeruginosa and is thus a valuable diagnostics tool to control the spread of these emerging resistant strains.


2018 ◽  
Vol 62 (7) ◽  
pp. e02584-17 ◽  
Author(s):  
Gregory G. Stone ◽  
Paul Newell ◽  
Patricia A. Bradford

ABSTRACT The increasing prevalence of multidrug-resistant Gram-negative pathogens has generated a requirement for new treatment options. Avibactam, a novel non-β-lactam–β-lactamase inhibitor, restores the activity of ceftazidime against Ambler class A, C, and some class D β-lactamase-producing strains of Enterobacteriaceae and Pseudomonas aeruginosa. The in vitro activities of ceftazidime-avibactam versus comparators were evaluated against 1,440 clinical isolates obtained in a phase 3 clinical trial in patients with complicated intra-abdominal infections (cIAI; ClinicalTrials.gov identifier NCT01499290). Overall, in vitro activities were determined for 803 Enterobacteriaceae, 70 P. aeruginosa, 304 Gram-positive aerobic, and 255 anaerobic isolates obtained from 1,066 randomized patients at baseline. Susceptibility was determined by broth microdilution. The most commonly isolated Gram-negative, Gram-positive, and anaerobic pathogens were Escherichia coli (n = 549), Streptococcus anginosus (n = 130), and Bacteroides fragilis (n = 96), respectively. Ceftazidime-avibactam was highly active against isolates of Enterobacteriaceae, with an overall MIC90 of 0.25 mg/liter. In contrast, the MIC90 for ceftazidime alone was 32 mg/liter. The MIC90 value for ceftazidime-avibactam (4 mg/liter) was one dilution lower than that of ceftazidime alone (8 mg/liter) against isolates of Pseudomonas aeruginosa. The ceftazidime-avibactam MIC90 for 109 ceftazidime-nonsusceptible Enterobacteriaceae isolates was 2 mg/liter, and the MIC range for 6 ceftazidime-nonsusceptible P. aeruginosa isolates was 8 to 32 mg/liter. The MIC90 values were within the range of susceptibility for the study drugs permitted per the protocol in the phase 3 study to provide coverage for aerobic Gram-positive and anaerobic pathogens. These findings demonstrate the in vitro activity of ceftazidime-avibactam against bacterial pathogens commonly observed in cIAI patients, including ceftazidime-nonsusceptible Enterobacteriaceae. (This study has been registered at ClinicalTrials.gov under identifier NCT01499290.)


2020 ◽  
Vol 75 (9) ◽  
pp. 2564-2572 ◽  
Author(s):  
Francesca Ghirga ◽  
Roberta Stefanelli ◽  
Luca Cavinato ◽  
Alessandra Lo Sciuto ◽  
Silvia Corradi ◽  
...  

Abstract Background Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa. Objectives Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants. Methods The available ArnT crystal structure was used for a docking-based virtual screening of an in-house library of natural products. The resulting putative ArnT inhibitors were tested in growth inhibition assays using a reference colistin-resistant P. aeruginosa strain. The most promising compound was further characterized for its range of activity, specificity and cytotoxicity. Additionally, the effect of the compound on lipid A aminoarabinosylation was verified by MS analyses of lipid A. Results A putative ArnT inhibitor (BBN149) was discovered by molecular docking and demonstrated to specifically potentiate colistin activity in colistin-resistant P. aeruginosa isolates, without relevant effect on colistin-susceptible strains. BBN149 also showed adjuvant activity against colistin-resistant Klebsiella pneumoniae and low toxicity to bronchial epithelial cells. Lipid A aminoarabinosylation was reduced in BBN149-treated cells, although only partially. Conclusions This study demonstrates that in silico screening targeting ArnT can successfully identify inhibitors of colistin resistance and provides a promising lead compound for the development of colistin adjuvants for the treatment of MDR bacterial infections.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Kevin M. Krause ◽  
Cat M. Haglund ◽  
Christy Hebner ◽  
Alisa W. Serio ◽  
Grace Lee ◽  
...  

ABSTRACT New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa. We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in phase 1 clinical trials. In addition, we describe the profiles of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Dee Shortridge ◽  
Mariana Castanheira ◽  
Michael A. Pfaller ◽  
Robert K. Flamm

ABSTRACT The activity of ceftolozane-tazobactam was compared to the activities of 7 antimicrobials against 3,851 Pseudomonas aeruginosa isolates collected from 32 U.S. hospitals in the Program to Assess Ceftolozane-Tazobactam Susceptibility from 2012 to 2015. Ceftolozane-tazobactam and comparator susceptibilities were determined using the CLSI broth microdilution method at a central monitoring laboratory. For ceftolozane-tazobactam, 97.0% of the isolates were susceptible. Susceptibilities of the other antibacterials tested were: amikacin, 96.9%; cefepime, 85.9%; ceftazidime, 85.1%; colistin, 99.2%; levofloxacin, 76.6%; meropenem, 81.8%; and piperacillin-tazobactam, 80.4%. Of the 699 (18.1%) meropenem-nonsusceptible P. aeruginosa isolates, 87.6% were susceptible to ceftolozane-tazobactam. Six hundred seven isolates (15.8%) were classified as multidrug resistant (MDR), and 363 (9.4%) were classified as extensively drug resistant (XDR). Only 1 isolate was considered pandrug resistant, which was resistant to all tested agents, including colistin. Of the 607 MDR isolates, 84.9% were ceftolozane-tazobactam susceptible, and 76.9% of XDR isolates were ceftolozane-tazobactam susceptible. In vitro activity against drug-resistant P. aeruginosa indicates ceftolozane-tazobactam may be an important agent in treating serious bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document