scholarly journals Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Nadine Lemaître ◽  
Xiaofei Liang ◽  
Javaria Najeeb ◽  
Chul-Jin Lee ◽  
Marie Titecat ◽  
...  

ABSTRACT The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.

Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 218 ◽  
Author(s):  
Milton Meerwein ◽  
Andrea Tarnutzer ◽  
Michelle Böni ◽  
Françoise Van Bambeke ◽  
Michael Hombach ◽  
...  

Increasing antibiotic resistances and a lack of new antibiotics render the treatment of Gram-negative bacterial infections increasingly difficult. Therefore, additional approaches are being investigated. Macrolides are not routinely used against Gram-negative bacteria due to lack of evidence of in vitro effectiveness. However, it has been shown that Pseudomonas spp. are susceptible to macrolides in liquid RPMI-1640 and clinical data suggest improvement in patients’ outcomes. So far, these findings have been hardly applicable to the clinical setting due to lack of routine low-complexity antimicrobial susceptibility testing (AST) for macrolides. We therefore optimized and compared broth microdilution and disk diffusion AST. Multidrug-resistant Gram-negative bacteria (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa) were tested for azithromycin susceptibility by disk diffusion and broth microdilution in Mueller–Hinton and RPMI-1640 media. Azithromycin susceptibility of Enterobacteriaceae and a subgroup of P. aeruginosa increased significantly on RPMI-1640 agar compared to Mueller–Hinton agar. Further, a significant correlation (Kendall, τ, p) of zone diameters and minimal inhibitory concentrations (MICs) was found on RPMI-1640 agar for E. coli (−0.4279, 0.0051), E. cloacae (−0.3783, 0.0237) and P. aeruginosa (−0.6477, <0.0001). Performing routine disk diffusion AST on RPMI-1640 agar may lead to the identification of additional therapeutic possibilities for multidrug-resistant bacterial infections in the routine clinical diagnostic setting.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Hayley E. Young ◽  
Jinshi Zhao ◽  
Jeffrey R. Barker ◽  
Ziqiang Guan ◽  
Raphael H. Valdivia ◽  
...  

ABSTRACT Constitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, including Chlamydia trachomatis . Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogen C. trachomatis lacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against a C. trachomatis genomic library using a conditional-lethal lpxH mutant Escherichia coli strain, we have identified an open reading frame (Ct461, renamed lpxG ) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function in E. coli and catalyzes the conversion of UDP-DAGn to lipid X in vitro . LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity of C. trachomatis , validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools for C. trachomatis and should be broadly applicable for the functional characterization of other essential C. trachomatis genes . IMPORTANCE Chlamydia trachomatis is a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of many Chlamydia genes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against the C. trachomatis genomic library using a conditional-lethal mutant of E. coli and identified the missing essential gene in the lipid A biosynthetic pathway, which we designated lpxG . We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activity in vitro . Overexpression of LpxG in C. trachomatis leads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating the in vivo function of LpxG and highlighting the importance of regulated lipid A biosynthesis in C. trachomatis .


2020 ◽  
Author(s):  
Axel B. Janssen ◽  
Dennis J. Doorduijn ◽  
Grant Mills ◽  
Malbert R.C. Rogers ◽  
Marc J.M. Bonten ◽  
...  

AbstractThe increasing prevalence of multidrug-resistant Gram-negative opportunistic pathogens, including Klebsiella pneumoniae, has led to a resurgence in the use of colistin as a last-resort drug. Colistin is a cationic lipopeptide antibiotic that selectively acts on Gram-negative bacteria through electrostatic interactions with anionic phosphate groups of the lipid A moiety of lipopolysaccharides (LPS). Colistin resistance in K. pneumoniae is mediated through loss of these phosphate groups, or modification with cationic groups (e.g. 4-amino-4-deoxy-L-arabinose (L-Ara4N), or phosphoethanolamine), but also hydroxylation of acyl-groups of lipid A. Here, we study the in vitro evolutionary trajectories towards colistin resistance in clinical K. pneumoniae complex strains (three K. pneumoniae sensu stricto strains and one K. variicola subsp. variicola strain) and their impact on fitness and virulence characteristics.Through population sequencing during the in vitro evolution experiment, we found that resistance develops through a combination of single nucleotide polymorphisms (SNPs), insertion and deletions (indels), and the integration of insertion sequence (IS) elements, affecting genes associated with LPS biosynthesis and modification, and capsule structures. The development of colistin resistance decreased the maximum growth rate of one K. pneumoniae sensu stricto strain, but not in the other three K. pneumoniae sensu lato strains. Colistin-resistant strains had lipid A modified through hydroxylation, palmitoylation, and L-Ara4N addition. Colistin-resistant K. pneumoniae sensu stricto strains exhibited cross-resistance to LL-37, in contrast to the K. variicola subsp. variicola strain that did not change in susceptibility to LL-37. Virulence, as determined in a Caenorhabditis elegans survival assay, was higher in two colistin-resistant strains.Our study suggests that nosocomial K. pneumoniae complex strains can rapidly develop colistin resistance de novo through diverse evolutionary trajectories upon exposure to colistin. This effectively shortens the lifespan of this last-resort antibiotic for the treatment of infections with multidrug-resistant Klebsiella.Author summaryBacteria that frequently cause infections in hospitalised patients are becoming increasingly resistant to antibiotics. Colistin is a positively charged antibiotic that is used for the treatment of infections with multidrug-resistant Gram-negative bacteria. Colistin acts by specifically interacting with the negatively charged LPS molecule in the outer membrane of Gram-negative bacteria. Colistin resistance is mostly mediated through modification of LPS to reduce its negative charge. Here, we use a laboratory evolution experiment to show that strains belonging to the Klebsiella pneumoniae complex, a common cause of multidrug-resistant hospital-acquired infections, can rapidly accumulate mutations that reduce the negative charge of LPS without an appreciable loss of fitness. Colistin resistance can lead to cross-resistance to an antimicrobial peptide of the human innate immune system, but can increase susceptibility to serum, and virulence in a nematode model. These findings show that extensively resistant K. pneumoniae complex strains may rapidly develop resistance to the last-resort antibiotic colistin via different evolutionary trajectories, while retaining their ability to cause infections.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Angela M. Kavanagh ◽  
Alysha G. Elliott ◽  
Bing Zhang ◽  
Soumya Ramu ◽  
...  

AbstractAntimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the ‘urgent threat’ pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Ryan K. Shields

ABSTRACT Cefiderocol is a newly approved siderophore cephalosporin that demonstrates expanded in vitro activity against multidrug-resistant Gram-negative bacteria. In two challenging cases reported here, cefiderocol shows potential utility as salvage therapy against difficult-to-treat pathogens with limited or no treatment options; however, two multicenter, randomized clinical trials have yielded mixed results among cefiderocol-treated patients. Taken together, clinicians must balance a clear need for cefiderocol in clinical practice with the uncertainties that have stemmed from the available data.


2015 ◽  
Vol 15 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Naomi Ochieng' ◽  
Humphrey Okechi ◽  
Susan Ferson ◽  
A. Leland Albright

OBJECT Ventriculoperitoneal shunt (VPS) infections are a major cause of morbidity and mortality in patients with hydrocephalus. Most data about these infections come from the Western literature. Few data about infecting organisms in Africa are available, yet knowledge of these organisms is important for the prevention and treatment of infectious complications. The purpose of this study was to determine the organisms cultured from infected shunts in a rural Kenyan hospital. METHODS The authors conducted a retrospective study of patients with VPS infections recorded in the neurosurgical database of BethanyKids at Kijabe Hospital between September 2010 and July 2012. RESULTS Among 53 VPS infections confirmed by culture, 68% occurred in patients who were younger than 6 months. Seventy-nine percent of the infections occurred within 2 months after shunt insertion. Only 51% of infections were caused by Staphylococcus species (Staphylococcus aureus 25%, other Staphylococcus species 26%), whereas 40% were caused by gram-negative bacteria. All S. aureus infections and 79% of other Staphylococcus infections were sensitive to cefazolin, but only 1 of 21 gram-negative bacteria was sensitive to it. The majority of gram-negative bacterial infections were multidrug resistant, but 17 of the 20 gram-negative bacteria were sensitive to meropenem. Gram-negative bacterial infections were associated with worse outcomes. CONCLUSIONS The high proportion of gram-negative infections differs from data in the Western literature, in which Staphylococcus epidermidis is by far the most common organism. Once a patient is diagnosed with a VPS infection in Kenya, immediate treatment is recommended to cover both gram-positive and gram-negative bacterial infections. Data from other Sub-Saharan countries are needed to determine if those countries have the same increased frequency of gram-negative infections.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Flora T. Mambe ◽  
Jean Na-Iya ◽  
Ghislain W. Fotso ◽  
Fred Ashu ◽  
Bathélémy Ngameni ◽  
...  

The present study aimed to assess the in vitro antibacterial and antibiotic modifying activities of methanol extracts prepared from the leaf (APL) and bark (APB) of Acacia polyacantha, fractions (APLa-d) and compounds isolated from APL against a panel of multidrug resistant (MDR) Gram-negative bacteria. Leaf extract was subjected to column chromatography for compounds isolation; antibacterial assays were performed on samples alone and with an efflux pump inhibitor (EPI), respectively, and several antibiotics on the tested bacteria. The phytochemical investigation of APL led to the isolation of stigmasterol (1), β-amyrin (2), 3-O-β-D-glucopyranosylstigmasterol (3), 3-O-methyl-D-chiro-inositol (4), epicatechin (5), quercetin-3-O-glucoside (6), 3-O-[β-D-xylopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (7), and 3-O-[β-galactopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (8). APL and APB had minimal inhibitory concentration (MIC) values ≤ 1024 μg/mL on 73.3% and 46.7% of the tested bacteria, respectively. APLb and APLd were effective against 88.9% of tested bacterial species with compound 8 showing the highest activity inhibiting 88.9% of tested bacteria. The EPI, phenylalanine-arginine-β-naphthylamide (PAßN), strongly improved the activity of APL, APLb, APLd, and compound 8 on all tested bacteria. Synergistic effects were obtained when APL and compounds 7 and 8 were combined with erythromycin (ERY), gentamycin (GEN), ciprofloxacin (CIP), and norfloxacin (NOR). The present study demonstrates the antibacterial potential of Acacia polyacantha and its constituents to combat bacterial infections alone or in combination with EPI.


2013 ◽  
Vol 58 (2) ◽  
pp. 851-858 ◽  
Author(s):  
Nicola Petrosillo ◽  
Maddalena Giannella ◽  
Massimo Antonelli ◽  
Mario Antonini ◽  
Bruno Barsic ◽  
...  

ABSTRACTA colistin-glycopeptide combination (CGC) has been shownin vitroto be synergistic against multidrug-resistant Gram-negative bacteria (MDR GNB), especiallyAcinetobacter baumannii, and to prevent further resistance. However, clinical data are lacking. We carried out a retrospective multicenter study of patients hospitalized in intensive care units (ICUs) who received colistin for GNB infection over a 1-year period, to assess the rates of nephrotoxicity and 30-day mortality after treatment onset among patients treated with and without CGC for ≥48 h. Of the 184 patients treated with colistin, GNB infection was documented for 166. The main causative agents were MDRA. baumannii(59.6%), MDRPseudomonas aeruginosa(18.7%), and carbapenem-resistantKlebsiella pneumoniae(14.5%); in 16.9% of patients, a Gram-positive bacterium (GPB) coinfection was documented. Overall, 68 patients (40.9%) received CGC. Comparison of patients treated with and without CGC showed significant differences for respiratory failure (39.7% versus 58.2%), ventilator-associated pneumonia (54.4% versus 71.4%), MDRA. baumanniiinfection (70.6% versus 52%), and GPB coinfection (41.2% versus 0%); there were no differences for nephrotoxicity (11.8% versus 13.3%) and 30-day mortality (33.8% versus 29.6%). Cox analysis performed on patients who survived for ≥5 days after treatment onset showed that the Charlson index (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.01 to 1.44;P= 0.001) and MDRA. baumanniiinfection (HR, 2.51; 95% CI, 1.23 to 5.12;P= 0.01) were independent predictors of 30-day mortality, whereas receiving CGC for ≥5 days was a protective factor (HR, 0.42; 95% CI, 0.19 to 0.93;P= 0.03). We found that CGC was not associated with higher nephrotoxicity and was a protective factor for mortality if administered for ≥5 days.


Sign in / Sign up

Export Citation Format

Share Document